Spectrochim Acta A Mol Biomol Spectrosc
February 2025
Chemical and structural alterations hold great importance in the field of diagenesis. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a valuable method for examining bio-apatite composition changes. Infrared spectroscopy (IR) and X-ray diffraction (XRD) were employed to analyze both modern and archaeological bone specimens.
View Article and Find Full Text PDFIn this study, a novel perovskite solar cell (PSC) architecture is presented that utilizes an HTL-free configuration with formamide tin iodide (FASnI) as the active layer and fullerene (C60) as the electron transport layer (ETL), which represents a pioneering approach within the field. The elimination of hole transport layers (HTLs) reduces complexity and cost in PSC heterojunction structures, resulting in a simplified and more cost-effective PSC structure. In this context, an HTL-free tin HC(NH)SnI-based PSC was simulated using the solar cell capacitance simulator (SCAPS) within a one-dimensional framework.
View Article and Find Full Text PDFPhotodynamic therapy (PDT), an approach to cancer treatment, relies fundamentally on two key elements: a light source and a photosensitizing agent. A primary challenge in PDT is the efficient delivery of photosensitizers to the target tissue, hindered by the body's reticuloendothelial system (RES). Silica nanoparticles (SiNPs), known for their unique properties, emerge as ideal carriers in this context.
View Article and Find Full Text PDFIn this study, a hybrid organic-inorganic perovskite solar cell (PSC) based on methylammonium germanium triiodide (MAGeI), which is composed of methylammonium (CH3NH3+) cations and germanium triiodide (GeI3-) anions, has been numerically studied using SCAPS-1d codes. An extensive investigation of various electron transport layers (ETLs) and hole transport layers (HTLs) was conducted to identify the most optimal device configuration. The FTO/ZnOS/MAGeI/PEDOT-WO structure performed the highest efficiency of all combinations tested, with an impressive optimized efficiency of 15.
View Article and Find Full Text PDFBackground/aims: Silica nanoparticles (SiNPs) have been promising vehicles for drug delivery. Cichorium Pumilum (CP), a natural photosensitizer (PS), has been reported to have many useful effects in cancer treatment. However, the poor water solubility and its low bioavailability have confined its use as a suitable photosensitizer for photodynamic therapy.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2019
Background: Achieved Silica Nanoparticles (SiNPs) to encapsulate the photosensitizer [Protoporphyrin IX (PpIX)] in photodynamic therapy (PDT) application was reported in this research.
Materials And Methods: Cytotoxicity for five different concentrations of encapsulated and naked PpIX was measured. Optimum concentration and optimum exposure time of encapsulated and naked PpIX that needed to destroy the cells (Osteosarcoma cells) was measured.
This study analysed the physical effects of Cichorium Pumilum (CP), as a natural photosensitizer (PS), and Protoporphyrin IX (PpIX), as a synthetic PS, encapsulated with silica nanoparticles (SiNPs) in photodynamic therapy. The optimum concentrations of CP and PpIX, needed to destroy Red Blood Cells (RBC), were determined and the efficacy of encapsulated CP and PpIX were compared with naked CP and PpIX was verified. The results confirmed the applicability of CP and PpIX encapsulated in SiNPs on RBCs, and established a relationship between the encapsulated CP and PpIX concentration and the time required to rupture 50% of the RBCs (t50).
View Article and Find Full Text PDFBackground/aims: The synthesis of methylene blue (MB) encapsulated in silica nanoparticles (SiNPs) as an application for photodynamic therapy is reported in this study. Semi-rigid tissues with optical properties similar to that of human tissues were used as sample materials to determine the applicability of MB encapsulated in SiNPs.
Materials And Methods: The changes in optical properties of the tissue treated with encapsulated MB under light exposure (Intensity at 664 nm ∼11.
Background/aims: This study analyzed the physical effects of methylene blue (MB) encapsulated within silica nanoparticles (SiNPs) in photodynamic therapy.
Materials And Methods: The optimum concentration of MB needed to destroy red blood cells (RBCs) was determined, and the efficacy of encapsulated MB-SiNPs compared to that of naked MB was verified.
Results: The results confirmed the applicability of MB encapsulated in SiNPs on RBCs, and established a relationship between the concentration of the SiNP-encapsulated MB and the time required to rupture 50% of the RBCs (t50).