Publications by authors named "Ghanayim N"

Background: Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG (electroencephalogram) was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. After having been taught arbitrary stimulus relations, he was evaluated for formation of equivalence classes among the trained stimuli.

Methods: A monitor presented visual information in two targets.

View Article and Find Full Text PDF

Objective: Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG was used to assess cognitive abilities of two late-stage ALS patients.

Methods: A monitor presented visual information in two targets. Patients used their SCPs to steer a cursor to one of the targets.

View Article and Find Full Text PDF

Objectives: Severely paralyzed patients could learn to voluntarily generate slow cortical potential (SCP) shifts in their electroencephalogram and to use these signals to operate a communication device. To enhance the patients' autonomy, the present study describes the development of a permanently available communication system that can be turned on and off by locked-in patients without external assistance. A skill necessary for turning the system on is the ability to regulate one's slow potentials in the absence of continuous feedback.

View Article and Find Full Text PDF

The thought translation device trains locked-in patients to self-regulate slow cortical potentials (SCP's) of their electroencephalogram (EEG). After operant learning of SCP self-control, patients select letters, words or pictograms in a computerized language support program. Results of five respirated, locked-in-patients are described, demonstrating the usefulness of the thought translation device as an alternative communication channel in motivated totally paralyzed patients with amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

A thought translation device (TTD) for brain-computer communication is described. Three patients diagnosed with amyotrophic lateral sclerosis (ALS), with total motor paralysis, were trained for several months. In order to enable such patients to communicate without any motor activity, a technique was developed where subjects learn to control their slow cortical potentials (SCP) in a 2-s rhythm, producing either cortical negativity or positivity according to the task requirement.

View Article and Find Full Text PDF

The study was intended to answer the question whether self-regulation of brain activity can be operantly learnt when the brain is disconnected from motor periphery. Two neurological patients with nearly complete motor paralysis learned bi-directional control of their slow cortical potentials (SCP) at vertex. After 4-6 weeks training both patients could reliably differentiate between SCP shifts in a negative versus positive direction.

View Article and Find Full Text PDF