Publications by authors named "Ghalem Said"

Introduction: Inflammation plays a crucial role in the body's defense mechanisms, but uncontrolled inflammation can lead to chronic and pathological conditions. This study aimed to identify natural compounds as potential replacements for the synthetic drug Zileuton, known for its side effects.

Method: Utilizing the MOE and Molegro modeling methods, several molecules were evaluated, and three compounds, namely 1-Isothiocyanatopent-4-en-2-ol, 7-Isothiocyanatohept-1-ene, and 5- (Isothiocyanatomethyl)-1,2,3-trimethoxybenzene, exhibited superior inhibitory properties.

View Article and Find Full Text PDF

The spread of corona-virus disease 2019 (COVID-19) has been faster than any other corona-viruses that have succeeded in crossing the animal-human barrier. This disease, caused by the severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2/2019-nCoV) posing a serious threat to global public health and local economies. There are three responsible for this disease; SARS-CoV-2, SARS-CoV and MERS-CoV.

View Article and Find Full Text PDF

A novel coronavirus, previously designated 2019-nCoV, was identified as the cause of a cluster of pneumonia cases in Wuhan, a city in the Hubei Province of China, at the end of 2019. Our objective focuses on the in silico study to screen for an alternative drug that can block the activity of the angiotensin converting enzyme 2 (ACE2), which is a key protein in the physiology of Covid-19, necessary for the entry of the SARS-Cov-2 virus into the host's cells using natural compounds especially phenolic antioxidants, polyphenolics and pharmaceutically phytochemicals derived from the leaves of Linn, appear to be very potential in controlling virus-induced infection. The results of the docking simulation revealed that méthyl-1,4,5-tri-O-caféoyl quinate has a stronger bond, high affinity and gives the best docking scores compared to, the co-crystallized inhibitor (PRD_002214) of the enzyme ACE2, chloroquine, hydroxychloroquine, captopril and simerprevir antiviral drugs.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is characterized by elevated blood glucose levels and can lead to serious complications such as nephropathy, neuropathy, retinopathy and cardiovascular disease. The aim of this work is to identify and investigate the inhibition mechanism of natural flavonoids and phenolics acids against, the α-amylase (αA) and α-glucosidase (αG). Therefore, we used different approaches; such as conceptual DFT and pharmacophore mapping in addition to molecular mechanics, dynamics and docking simulations.

View Article and Find Full Text PDF

The objective of this present study is to focus on the study to screen for an alternative drug that can block the activity of the angiotensin converting enzyme 2 (ACE2) as a receptor for SARS-CoV-2, potential therapeutic target of the COVID-19 virus using natural compounds (Isothymol, Thymol, Limonene, P-cymene and γ-terpinene) derived from the essential oil of the antiviral and antimicrobial plant (Desf.) Briq. which is located in the occidental Algeria areas.

View Article and Find Full Text PDF

The aim of the present study focuses on the molecular docking approach to screen alternative drug that can regulate the hyperglycemia by down-regulating α-glucosidase and α-amylase activity using phenolic compounds: tannic acid (L1), catechin (L2), gallic acid (L3), quercetin (L5) and epicatechin (L6). L1 gives the best docking scores, its interaction with α-amylase and α-glucosidase has the lowest energy score compared to the other complexes and to the acarbose (L4). L1 forms strong five H-donor interactions with residues of active site of α-amylase and three H-donor interactions with α-glucosidase.

View Article and Find Full Text PDF

Background: In medicinal chemistry, the discovery of small organic molecules that can be optimized and lead to a future drug capable of effectively modulating the biological activity of a therapeutic target remains a major challenge. Because of the harmful secondary effects of synthesized therapeutic molecules, the development of research has been oriented towards phytomedicines. Phenolic compounds from medicinal plants are constantly explored for new therapeutic use.

View Article and Find Full Text PDF

Background And Purpose: This work deals with several molecular modeling methods used to discover new therapeutic agents for treating the Alzheimer's disease (AD). The cholinergic hypothesis was initially presented over 30 years ago and suggests that a dysfunction of acetylcholine containing neurons in the brain. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) are of the keys targets of drugs for treating AD.

View Article and Find Full Text PDF