Antibody-drug conjugates (ADCs) are a new class of therapeutics that use antibodies to deliver potent cytotoxic drugs selectively to cancer cells. CD203c, an ecto-nucleotide pyrophosphatase-phosphodiesterase 3, is overexpressed on neoplastic mast cells (MCs) in systemic mastocytosis (SM), thus representing a promising target for antibody-mediated therapy. In this study, we have found that human neoplastic MC lines (ROSA and ROSA), which express high levels of CD203c, are highly and specifically sensitive to the antiproliferative effects of an ADC against CD203c (AGS-16C3F).
View Article and Find Full Text PDFMastocytosis is a term used to denote a group of rare diseases characterized by an abnormal accumulation of neoplastic mast cells in various tissues and organs. In most patients with systemic mastocytosis, the neoplastic cells carry activating mutations in Progress in mastocytosis research has long been hindered by the lack of suitable models, such as permanent human mast cell lines. In fact, only a few human mast cell lines are available to date: HMC-1, LAD1/2, LUVA, ROSA and MCPV-1.
View Article and Find Full Text PDFSystemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date.
View Article and Find Full Text PDFInfection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins.
View Article and Find Full Text PDFIn systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice.
View Article and Find Full Text PDF