Publications by authors named "Ghafour Amouzad Mahdiraji"

Highly sensitive, simple and multiplex detection capabilities are key criteria of point-of-care (POC) diagnosis in clinical samples. Here, a simple and highly sensitive multi-analyte detection technique is proposed by using photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor that employs both internal and external sensing approaches. The proposed sensor can detect two different analytes simultaneously by the internal and external plasmonic micro-channels.

View Article and Find Full Text PDF

Highly sensitive mode-multiplex miniaturized sensors enable the detection and quantification of multiple biomolecules simultaneously through their real-time interactions. Here, we demonstrate a grapefruit photonic crystal fiber (PCF)-based mode-multiplex surface plasmon resonance (SPR) sensor that detects multiple analytes simultaneously. Three grapefruit-shaped air-holes are internally coated with plasmonic gold (Au) material, which allows them to act as mode-multiplex channels that detect three unknown analytes.

View Article and Find Full Text PDF

This work demonstrates a broadband polarization filter based on copper-filled photonic crystal fiber (CFPCF). The proposed fiber is fabricated using the conventional stack-and-draw method. The polarization filter properties of the proposed CFPCF are investigated numerically by considering the cross-sectional scanning electron microscopy image of the fabricated CFPCF.

View Article and Find Full Text PDF

Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements.

View Article and Find Full Text PDF

Diamond Ring Fiber (DRF) is proposed to allow a high percentage of evanescent field exposure while maintaining low confinement loss. It provides a long and protected medium for light-matter interaction and large cavities to ease the infiltration of sensing elements. DRFs with different waveguide parameters have been analyzed theoretically and fabricated using a stack-and-draw fiber drawing technique.

View Article and Find Full Text PDF