Publications by authors named "Ghafar Yerima"

The protein corona formed on nanoparticles (NPs) has potential as a valuable diagnostic tool for improving plasma proteome coverage. Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules allows for the detection of 1793 proteins marking an 8.

View Article and Find Full Text PDF

The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients (namely, glucose, triglyceride, diglycerol, phosphatidylcholine, phosphatidylethanolamine, L-α-phosphatidylinositol, inosine 5'-monophosphate, and B complex), into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.

View Article and Find Full Text PDF

The linkers of the nucleoskeleton and cytoskeleton (LINC) complex comprises Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, whose conserved interactions provide a physical coupling between the cytoskeleton and the nucleoskeleton, thereby mediating the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. Recent studies have suggested a higher-order assembly of SUN and KASH instead of a more widely accepted linear trimer model for the LINC complex.

View Article and Find Full Text PDF

Large protein complexes assemble at the nuclear envelope to transmit mechanical signals between the cytoskeleton and nucleoskeleton. These protein complexes are known as the linkers of the nucleoskeleton and cytoskeleton complexes (LINC complexes) and are formed by the interaction of SUN and KASH domain proteins in the nuclear envelope. Ample evidence suggests that SUN-KASH complexes form higher-order assemblies to withstand and transfer forces across the nuclear envelope.

View Article and Find Full Text PDF