Publications by authors named "Ghadiyaram Chakshusmathi"

Current influenza vaccines need to be updated annually due to mutations in the globular head of the viral surface protein, hemagglutinin (HA). To address this, vaccine candidates have been designed based on the relatively conserved HA stem domain and have shown protective efficacy in animal models. Oligomerization of the antigens either by fusion to oligomerization motifs or display on self-assembling nanoparticle scaffolds, can induce more potent immune responses compared to the corresponding monomeric antigen due to multivalent engagement of B-cells.

View Article and Find Full Text PDF

Matriptase is a cell-surface trypsin-like serine protease of epithelial origin, which cleaves and activates proteins including hepatocyte growth factor/scatter factor and proteases such as uPA, which are involved in the progression of various cancers. Here we report a fragment-linking approach, which led to the discovery of O-(3-carbamimidoylphenyl)-l-serine amides as potent matriptase inhibitors. The co-crystal structure of one of the potent inhibitors, 6 in complex with matriptase catalytic domain validated the working hypothesis guiding the development of this congeneric series and revealed the structural basis for matriptase inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on 3-alkoxy-pyrrolo[1,2-b]pyrazolines, which are new selective androgen receptor modulators designed for effective transdermal delivery.
  • Compound 26 demonstrated strong binding affinity to the human androgen receptor with an IC50 of 0.7 nM and stimulated the receptor effectively in muscle cells.
  • It showed promising skin permeation capabilities and restored skeletal muscle weight in castrated rats, highlighting its potential therapeutic applications with minimal side effects on the prostate.
View Article and Find Full Text PDF

Matriptase belongs to trypsin-like serine proteases involved in matrix remodeling/degradation, growth regulation, survival, motility, and cell morphogenesis. Herein, we report a structure-based approach, which led to the discovery of sulfonamide and amide derivatives of pyridyl bis(oxy)benzamidine as potent and selective matriptase inhibitors. Co-crystal structures of selected compounds in complex with matriptase supported compound designing.

View Article and Find Full Text PDF

Matriptase is a serine protease implicated in cancer invasion and metastasis. Expression of matriptase is frequently dysregulated in human cancers and matriptase has been reported to activate latent growth factors such as hepatocyte growth factor/scatter factor, and proteases such as urokinase plasminogen activator suggesting that matriptase inhibitors could have therapeutic potential in treatment of cancer. Here we report a structure-based approach which led to the discovery of selective and potent matriptase inhibitors with benzene as central core having 1,3,5 tri-substitution pattern.

View Article and Find Full Text PDF

Even though protein tyrosine phosphatase has been identified as a validated therapeutic target over a decade for type II diabetes and obesity, developing a selective inhibitor to protein tyrosine phosphatase 1B (PTP1B) over other cellular PTPases has been a complicated task owing to the highly conserved and polar nature of the PTP1B catalytic site. Virtual screening study of in-house chemical depository resulted in the prioritization of few low molecular weight compounds as PTP1B inhibitors. The in-vitro pNPP assays were carried out on prioritized compounds in both PTP1B and T-cell protein tyrosine phosphatase (TCPTP).

View Article and Find Full Text PDF

Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p.

View Article and Find Full Text PDF

Temperature-sensitive (Ts) mutants are a powerful tool with which to study gene function in vivo. Ts mutants are typically generated by random mutagenesis followed by laborious screening procedures. By using the Escherichia coli cytotoxin CcdB as a model system, simple procedures for generating Ts mutants at high frequency through site-directed mutagenesis were developed.

View Article and Find Full Text PDF

The La protein is a ubiquitous nuclear phosphoprotein that recognizes the 3' uridylates found in all newly synthesized RNA polymerase III transcripts. La binding stabilizes these transcripts from exonucleases and may also assist their folding. Here we present the first structural insights into how the La protein specifically interacts with its RNA substrates.

View Article and Find Full Text PDF

The protein CcdB (controller of cell division or death B) is an F-plasmid-encoded toxin that acts as an inhibitor of Escherichia coli DNA gyrase. The stability and aggregation state of CcdB have been characterized as a function of pH and temperature. Size-exclusion chromatography revealed that the protein is a dimer at pH 7.

View Article and Find Full Text PDF

The La protein protects the 3' ends of many nascent small RNAs from exonucleases. Here we report that La is required for efficient folding of certain pre-tRNAs. A mutation in pre-tRNA(Arg)(CCG) causes yeast cells to be cold-sensitive and to require the La protein Lhp1p for efficient growth.

View Article and Find Full Text PDF