Publications by authors named "Ghadge G"

Ribosome profiling and mass spectroscopy have identified canonical and noncanonical translation initiation codons (TICs) that are upstream of the main translation initiation site and used to translate oncogenic proteins. There have previously been conflicting reports about the patterns of nucleotides that surround noncanonical TICs. Here, we use a Kozak Similarity Score algorithm to find that nearly all of these TICs have flanking nucleotides closely matching the Kozak sequence.

View Article and Find Full Text PDF

A number of neurologic diseases associated with expanded nucleotide repeats, including an inherited form of amyotrophic lateral sclerosis, have an unconventional form of translation called repeat-associated non-AUG (RAN) translation. It has been speculated that the repeat regions in the RNA fold into secondary structures in a length-dependent manner, promoting RAN translation. Repeat protein products are translated, accumulate, and may contribute to disease pathogenesis.

View Article and Find Full Text PDF

A hexanucleotide repeat expansion GGGGCC in the non-coding region of C9orf72 is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Toxic dipeptide repeats (DPRs) are synthesized from GGGGCC via repeat-associated non-AUG (RAN) translation. Here, we develop C.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of RNA-binding proteins (RBPs) like TDP-43, FUS, and PTB in multiple sclerosis (MS), aiming to see if their nuclear depletion and mislocalization, similar to findings in ALS, occur in MS as well.
  • - Researchers observed that mislocalized TDP-43 and decreased expression of PTB1 and PTB2 occurred in oligodendrocytes and neurons in MS lesions, particularly under metabolic stress conditions.
  • - The results suggest that the altered expression of TDP-43 and PTB could contribute to neurodegeneration in MS, highlighting nucleocytoplasmic transport as a potential therapeutic target.
View Article and Find Full Text PDF

Statins, the drugs for the treatment of dyslipidemia, have been suggested to impact insulin sensitivity, resulting in pancreatic β-cell dysfunction, and consequently, lead to new onset of diabetes. Taking this as a clue, the present study was designed to evaluate the protective effect of sesamol (a known antioxidant, antidiabetic and antidyslipidemic agent) against the diabetogenic potential of simvastatin. The toxic effects of simvastatin and sesamol on MIN6 insulinoma (Mouse pancreatic β cells) cells were evaluated separately by MTT assay.

View Article and Find Full Text PDF

Mutations in Cu/Zn superoxide dismutase (SOD1) cause ~20% of familial ALS (FALS), which comprises 10% of total ALS cases. In mutant SOD1- (mtSOD1-) induced ALS, misfolded aggregates of SOD1 lead to activation of the unfolded protein response/integrated stress response (UPR/ISR). Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a kinase that phosphorylates eukaryotic translation initiator factor 2α (p-eIF2α), coordinates the response by causing a global suppression of protein synthesis.

View Article and Find Full Text PDF

TDP-43, an RNA-binding protein that is primarily nuclear and important in splicing and RNA metabolism, is mislocalized from the nucleus to the cytoplasm of neural cells in amyotrophic lateral sclerosis (ALS), and contributes to disease. We sought to investigate whether TDP-43 is mislocalized in infections with the acute neuronal GDVII strain and the persistent demyelinating DA strain of Theiler's virus murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae because: i) L protein of both strains is known to disrupt nucleocytoplasmic transport, including transport of polypyrimidine tract binding protein, an RNA-binding protein, ii) motor neurons and oligodendrocytes are targeted in both TMEV infection and ALS. TDP-43 phosphorylation, cleavage, and cytoplasmic mislocalization to an aggresome were observed in wild type TMEV-infected cultured cells, with predicted splicing abnormalities.

View Article and Find Full Text PDF

Mutations in Cu/Zn superoxide dismutase (SOD1) are the cause of ~20% of cases of familial ALS (FALS), which comprise ~10% of the overall total number of cases of ALS. Mutant (mt) SOD1 is thought to cause FALS through a gain and not loss in function, perhaps as a result of the mutant protein's misfolding and aggregation. Previously we used a phage display library to raise single chain variable fragment antibodies (scFvs) against SOD1, which were found to decrease aggregation of mtSOD1 and toxicity in vitro.

View Article and Find Full Text PDF

Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon.

View Article and Find Full Text PDF

Here we report a gain in function for mutant (mt) superoxide dismutase I (SOD1), a cause of familial amyotrophic lateral sclerosis (FALS), wherein small soluble oligomers of mtSOD1 acquire a membrane toxicity. Phosphatidylglycerol (PG) lipid domains are selectively targeted, which could result in membrane damage or "toxic channels" becoming active in the bilayer. This PG-selective SOD1-mediated membrane toxicity is largely reversible in vitro by a widely-available FDA-approved surfactant and membrane-stabilizer P188.

View Article and Find Full Text PDF

Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells.

View Article and Find Full Text PDF

Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry.

View Article and Find Full Text PDF

Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS.

View Article and Find Full Text PDF

Point mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) impart a gain-of-function to this protein that underlies 20-25% of all familial amyotrophic lateral sclerosis (FALS) cases. However, the specific mechanism of mutant SOD1 toxicity has remained elusive. Using the complementary techniques of atomic force microscopy (AFM), electrophysiology, and cell and molecular biology, here we examine the structure and activity of A4VSOD1, a mutant SOD1.

View Article and Find Full Text PDF

The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce an early transient subclinical neuronal disease followed by a chronic progressive inflammatory demyelination, with persistence of the virus in the central nervous system (CNS) for the life of the mouse. Although TMEV-induced demyelinating disease (TMEV-IDD) is thought to be immune mediated, there is also evidence that supports a role for the virus in directly inducing demyelination. In order to clarify the function of DA virus genes, we generated a transgenic mouse that had tamoxifen-inducible expression of the DA L-coding region in oligodendrocytes (and Schwann cells), a cell type in which the virus is known to persist.

View Article and Find Full Text PDF

Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD).

View Article and Find Full Text PDF

Excessive glutamate neurotransmission has been implicated in neuronal injury in many disorders of the central nervous system (CNS), including human immunodeficiency virus (HIV)-associated dementia. Gp120IIIB is a strain of a HIV glycoprotein with specificity for the CXCR4 receptor that induces neuronal apoptosis in in vitro models of acquired immunodeficiency syndrome (AIDS)-induced neurodegeneration. Since the catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) by glutamate carboxypeptidase (GCP) II increases cellular glutamate, an event associated with excitotoxicity, we hypothesized that inhibition of GCP II may prevent gp120IIIB-induced cell death.

View Article and Find Full Text PDF

The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce a persistent central nervous system infection associated with an inflammatory white matter demyelinating disease. TO subgroup strains synthesize an 18-kDa protein, L*, out of frame with the polyprotein from an initiation codon 13 nucleotides downstream from the polyprotein's AUG codon. We previously generated a mutant virus from our infectious DA full-length clone that has a change of the L* AUG codon to ACG (with no change in the polyprotein's amino acid sequence).

View Article and Find Full Text PDF

Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and approximately 25% of FALS cases are caused by mutations in superoxide dismutase-1 (SOD1). Mutant (MT) SOD1 kills motor neurons because of the mutant protein's toxicity; however, the basis for toxicity is unknown. We electroporated wild-type (WT), truncated WT or MTSOD1 expression constructs into the chick embryo spinal cord.

View Article and Find Full Text PDF

The neuropathology of Parkinson's Disease has been modeled in experimental animals following MPTP treatment and in dopaminergic cells in culture treated with the MPTP neurotoxic metabolite, MPP(+). MPTP through MPP(+) activates the stress-activated c-Jun N-terminal kinase (JNK) pathway in mice and SH-SY5Y neuroblastoma cells. Recently, it was demonstrated that CEP-1347/KT7515 attenuated MPTP-induced nigrostriatal dopaminergic neuron degeneration in mice, as well as MPTP-induced JNK phosphorylation.

View Article and Find Full Text PDF

Approximately 10% of cases of amyotrophic lateral sclerosis (ALS), a progressive and fatal degeneration that targets motor neurons (MNs), are inherited, and approximately 20% of these cases of familial ALS (FALS) are caused by mutations of copper/zinc superoxide dismutase type 1. Glutamate excitotoxicity has been implicated as a mechanism of MN death in both ALS and FALS. In this study, we tested whether a neuroprotective strategy involving potent and selective inhibitors of glutamate carboxypeptidase II (GCPII), which converts the abundant neuropeptide N-acetylaspartylglutamate to glutamate, could protect MNs in an in vitro and animal model of FALS.

View Article and Find Full Text PDF

Aggregates of Cu/Zn superoxide dismutase (SOD) have been demonstrated in familial amyotrophic lateral sclerosis (FALS) and other neurodegenerative diseases; however, their role in disease pathogenesis is unclear. In this study, we investigated the presence of SOD aggregates in nerve growth factor (NGF)-differentiated PC12 cells and cell viability following: (i) transduction with replication-deficient recombinant adenoviruses (AdVs) expressing wild-type SOD (SODWT) or mutant SOD (SODMT, V148G or A4V); (ii) transfection of yellow fluorescent protein-tagged SODWT (SODWT-YFP) or SODMT (SODA4V-YFP, SODV148G-YFP). SOD aggregates were more prominent in cells following transduction of AdSODMT than AdSODWT and following treatment with H2O2, suggesting that mutant SOD leads to oxidation of cellular components.

View Article and Find Full Text PDF

Overexpression of gp120, the major coat protein of the HIV-1 virus, in central glial cells, or treatment of neurons with gp120 in culture, produces apoptotic neuronal death. Here we demonstrate that CEP-1347 (KT7515), an inhibitor of mixed lineage kinase 3 (MLK3), an upstream activator of JNK, inhibits gp120IIIB-induced apoptosis of hippocampal neurons. Furthermore, expression of wild type MLK3 in hippocampal pyramidal neurons enhanced gp120IIIB-induced neurotoxicity, whereas expression of a dominant negative MLK3 protected neurons from the toxic effects of the glycoprotein.

View Article and Find Full Text PDF

Objective: Depletion of nitric oxide may play a role in the development of vasospasm after aneurysmal subarachnoid hemorrhage. Replenishment of nitric oxide might be a useful treatment for vasospasm. Using rats, we performed intracisternal injections of replication-defective adenovirus containing the endothelial nitric oxide synthase (eNOS) gene and determined the localization of and effect on cerebral blood flow of transgene expression.

View Article and Find Full Text PDF

Objective: Evidence indicates that vasospasm after subarachnoid hemorrhage (SAH) is caused in part by a decrease in the vasodilator nitric oxide (NO), which is produced mainly in endothelial cells. This study tested whether intracisternal injection of adenovirus-expressing endothelial NO synthase (eNOS) would decrease vasospasm in dogs.

Methods: In 12 dogs, baseline cerebral angiography was performed, and then SAH was produced by two injections of blood into the cisterna magna.

View Article and Find Full Text PDF