Publications by authors named "Ghadeer Shubassi"

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1 DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1. We employ pharmacological and genetic approaches to rescue DDR and NER during aging.

View Article and Find Full Text PDF

Atg6 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6-Vps38-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process.

View Article and Find Full Text PDF

Mec1 mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors are clinically relevant because they are used as anticancer drugs. Recent evidence sheds light on an intriguing connection among the DNA damage response (DDR), protein acetylation, and autophagy. HDAC inhibitors have been shown to counteract key steps in the cellular response to double-strand break formation by affecting checkpoint activation, homologous recombination-mediated repair of DNA lesions, and stability of crucial enzymes involved in resection of DNA ends.

View Article and Find Full Text PDF

Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response.

View Article and Find Full Text PDF