Background And Objective: Photoplethysmography (PPG) signals provide a non-invasive method for monitoring cardiovascular health, including blood pressure levels, which are critical for the early detection and management of hypertension. This study leverages wavelet transformation and special purpose deep learning model, enhanced by signal processing and normalization, to classify blood pressure stages from PPG signals. The primary objective is to advance non-invasive hypertension monitoring, improving the accuracy and efficiency of these assessments.
View Article and Find Full Text PDFObtaining accurate cardiac auscultation signals, including basic heart sounds (S1 and S2) and subtle signs of disease, is crucial for improving cardiac diagnoses and making the most of telehealth. This research paper introduces an innovative approach that utilizes a modified cosine transform (MCT) and a masking strategy based on long short-term memory (LSTM) to effectively distinguish heart sounds and murmurs from background noise and interfering sounds. The MCT is used to capture the repeated pattern of the heart sounds, while the LSTMs are trained to construct masking based on the repeated MCT spectrum.
View Article and Find Full Text PDF