With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.
View Article and Find Full Text PDFBarley ( L.) is the second most consumed and cultivated cereal by the Moroccan population. However, it is predicted that frequent drought periods, caused by climate change, can cause problems in plant growth.
View Article and Find Full Text PDFMicrobial infections and nosocomial diseases associated with biomaterial have become a major problem of public health and largely lead to revision surgery, which is painful and quite expensive for patients. These infections are caused by formation of biofilm, which present a difficulty of treatment with conventional antibiotics. The aim of our study is to investigate the theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa on four 3-dimensional printing filament materials used in the manufacture of medical equipment.
View Article and Find Full Text PDFThis study highlights the mechanisms of Pb(II)-phycoremediation using the Pb(II) tolerant strain of . First, monitoring of cell growth kinetics in control and Pb(II)-doped medium revealed significant growth inhibition, while the analyses through flow cytometry and Zetasizer revealed no difference in cell viability and size. Residual weights of control and Pb(II)-loaded cells assessed by thermogravimetric analysis were 31.
View Article and Find Full Text PDFBackground: Soil pollution by heavy metals increases the bioavailability of metals like hexavalent chromium (Cr (VI)), subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting rhizobacteria (PGPR) have substantial potential to enhance plant growth as well as plant tolerance to metal stress. The aim of this research was to investigate Cr (VI) phytoremediation enhancement by PGPR.
View Article and Find Full Text PDFHeavy metal (HM) contamination of water bodies is a serious global environmental problem. Because they are not biodegradable, they can accumulate in food chains, causing various signs of toxicity to exposed organisms, including humans. Due to its effectiveness, low cost, and ecological aspect, phycoremediation, or the use of microalgae's ecological functions in the treatment of HMs contaminated wastewater, is one of the most recommended processes.
View Article and Find Full Text PDFThis study investigated the dye decolorization capacity of three yeast strains. Cyberlindnera fabianii was shortlisted for its high decolorization capacity and was further tested on various azo dyes. Based on the color of the biomass, and the UV-Vis analysis, Acid Red 14 was selected as a model dye, to examine the enzymatic biodegradation.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
December 2018
Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria.
View Article and Find Full Text PDFA Wickeramomyces anomalus biofilm supported on wood husk was used to remediate water bodies contaminated with chromium (Cr), in batch and open systems. The favorable adhesion ability of the chromium-resistant yeast strain on the wood husk was predicted by XDLVO theory and confirmed by environmental scanning electronic microscopy. The chromium decontamination was then optimized in a batch mode using a central composite design (CCD).
View Article and Find Full Text PDFSoil fungi associated with plant roots, notably ectomycorrhizal (EcM) fungi, are central in above- and below-ground interactions in Mediterranean forests. They are a key component in soil nutrient cycling and plant productivity. Yet, major disturbances of Mediterranean forests, particularly in the Southern Mediterranean basin, are observed due to the greater human pressures and climate changes.
View Article and Find Full Text PDFThe cork oak forest is an ecosystem playing a major role in Moroccan socio-economy and biodiversity conservation. However, this ecosystem is negatively impacted by extensive human- and climate-driven pressures, causing a strong decrease in its distribution and a worsening of the desertification processes. This study aims at characterising the impact of cork oak forest management on a major actor of its functioning, the ectomycorrhizal (EcM) fungal community associated with Quercus suber, and the determination of EcM bio-indicators.
View Article and Find Full Text PDFRev Environ Contam Toxicol
March 2015
Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species.
View Article and Find Full Text PDFThe novel Serratia proteamaculans isolated from a chromium-contaminated site was tolerant to a concentration of 500 mg Cr(VI)/l. The optimum pH and temperature for reduction of Cr(VI) by S. proteamaculans were found to be 7.
View Article and Find Full Text PDFAim: Localization of Cr(VI) removal activity in Candida tropicalis strain and the study of its Cr(VI) removal capacity in soil.
Methods And Results: Candida tropicalis strain HE650140 showed a remarkable capacity to completely reduce 50 mg l(-1) of Cr(VI) in 48 h under aerobic conditions; however, a small change in total content of chromium in the culture liquid was detected, which can be explained by the formation of Cr(III). Fractionation of the cells showed that chromium removal activity was present in both the cytoplasm and membrane.
DFMO (alpha-DL-difluoromethylornithine), a specific irreversible inhibitor of ornithine decarboxylase (ODC), a polyamine biosynthetic pathway enzyme, strongly inhibits root growth and arbuscular mycorrhizal infection of Pisum sativum (P56 myc+, isogenic mutant of cv. Frisson). This inhibition is reversed when exogenous polyamine (putrescine) is included in the DFMO treatment, showing that the effect of DFMO on arbuscular mycorrhizal infection is indeed due to putrescine limitation and suggesting that ODC may have a role in root growth and mycorrhizal infection.
View Article and Find Full Text PDF