Publications by authors named "Geza R Szilvay"

High strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that .

View Article and Find Full Text PDF

Hydrophobins are surface-active proteins produced by filamentous fungi. The amphiphilic structure of hydrophobins is very compact, containing a distinct hydrophobic patch on one side of the molecule, locked by four intramolecular disulfide bridges. Hydrophobins form dimers and multimers in solution to shield these hydrophobic patches from water exposure.

View Article and Find Full Text PDF

Fundamental changes of agriculture and food production are inevitable. Providing food for an increasing population will be a great challenge that coincides with the pressure to reduce negative environmental impacts of conventional agriculture. Biotechnological manufacturing of acellular products for food and materials has already been piloted but the full profit of cellular agriculture is just beginning to emerge.

View Article and Find Full Text PDF

Hydrophobins have raised lots of interest as powerful surface adhesives. However, it remains largely unexplored how their strong and versatile surface adhesion is linked to their unique amphiphilic structural features. Here, we develop an AFM-based single-molecule force spectroscopy assay to quantitatively measure the binding strength of hydrophobin to various types of surfaces both in isolation and in preformed protein films.

View Article and Find Full Text PDF

The adhesive and mechanical properties of a modular fusion protein consisting of two different types of binding units linked together via a flexible resilin-like-polypeptide domain are quantified. The adhesive domains have been constructed from fungal cellulose-binding modules (CBMs) and an amphiphilic hydrophobin HFBI. This study is carried out by single-molecule force spectroscopy, which enables stretching of single molecules.

View Article and Find Full Text PDF

Hydrophobins are surface-active proteins that form a hydrophobic, water-repelling film around aerial fungal structures. They have a compact, particle-like structure, in which hydrophilic and hydrophobic regions are spatially separated. This surface property renders them amphiphilic and is reminiscent of synthetic Janus particles.

View Article and Find Full Text PDF

We use surface-specific vibrational sum-frequency generation spectroscopy (VSFG) to study the structure and self-assembling mechanism of the class I hydrophobin SC3 from Schizophyllum commune and the class II hydrophobin HFBI from Trichoderma reesei. We find that both hydrophobins readily accumulate at the water-air interface and form rigid, highly ordered protein films that give rise to prominent VSFG signals. We identify several resonances that are associated with β-sheet structures and assign them to the central β-barrel core present in both proteins.

View Article and Find Full Text PDF

Hydrophobin is a surface active protein having both hydrophobic and hydrophilic functional domains which has previously been used for functionalization and solubilization of graphene and carbon nanotubes. In this work, field-effect transistors based on single nanotubes have been employed for electronic detection of hydrophobin protein in phosphate buffer solution. Individual nanotubes, single- and multiwalled, are characterized by atomic force microscopy after being immersed in protein solution, showing a relatively dense coverage with hydrophobin.

View Article and Find Full Text PDF

Molecular biomimetic models suggest that proteins in the soft matrix of nanocomposites have a multimodular architecture. Engineered proteins were used together with nanofibrillated cellulose (NFC) to show how this type of architecture leads to function. The proteins consist of two cellulose-binding modules (CBM) separated by 12-, 24-, or 48-mer linkers.

View Article and Find Full Text PDF

The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics.

View Article and Find Full Text PDF

The molecular structural basis for the function of specific peptides that bind to diamond-like carbon (DLC) surfaces was investigated. For this, a competition assay that provided a robust way of comparing relative affinities of peptide variants was set up. Point mutations of specific residues resulted in significant effects, but it was shown that the chemical composition of the peptide was not sufficient to explain peptide affinity.

View Article and Find Full Text PDF

A bifunctional protein composed of a highly negatively charged oyster shell protein and a chitin-binding domain enabled the formation of biohybrid materials through non-covalent surface modification of chitin nanofibres. The results demonstrate that specific biomolecular interactions offer a route for the formation of biosynthetic materials.

View Article and Find Full Text PDF

Phage display was used to find peptides specific for amorphous diamond-like carbon (DLC). A set of putative binders was analyzed in detail and one sequence was found that functioned both as a peptide fused to the pIII protein in M13 phage and as a peptide fused to the enzyme alkaline phosphatase (AP). The dissociation constant of the peptide-AP fusion on DLC was 63nM and the maximum binding capacity was 6.

View Article and Find Full Text PDF

Unlabelled: The de novo engineering of new proteins will allow the design of complex systems in synthetic biology. But the design of large proteins is very challenging due to the large combinatorial sequence space to be explored and the lack of a suitable selection system to guide the evolution and optimization. One way to approach this challenge is to use computational design methods based on the current crystallographic data and on molecular mechanics.

View Article and Find Full Text PDF

Hydrophobins are structural proteins produced by filamentous fungi that are amphiphilic and function through self-assembling into structures such as membranes. They have diverse roles in the growth and development of fungi, for example in adhesion to substrates, for reducing surface tension to allow aerial growth, in forming protective coatings on spores and other structures. Hydrophobin membranes at the air-water interface and on hydrophobic solids are well studied, but understanding how hydrophobins can bind to a polar surface to make it more hydrophobic has remained unresolved.

View Article and Find Full Text PDF

Composites represent a class of materials with properties that are obtained by combining the functions of different components. Combining soft and stiff components without losing toughness is typically very difficult with current synthetic tools. There are many natural materials for which this problem has been solved.

View Article and Find Full Text PDF

Engineered enzyme conjugate of the small laccase enzyme from Streptomyces coelicolor and zinc finger DNA binding domain from Zif268 is demonstrated to bind double stranded DNA in a site specific manner while retaining enzymatic activity.

View Article and Find Full Text PDF

Beta roll motifs are associated with several proteins secreted by the type 1 secretion system (T1SS). Located just upstream of the C-terminal T1SS secretion signal, they are believed to act as calcium-induced switches that prevent folding before secretion. Bordetella pertussis adenylate cyclase (CyaA) toxin has five blocks of beta roll motifs (or repeats-in-toxin motifs) separated by linkers.

View Article and Find Full Text PDF

A better understanding of the conformational changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin (RTX) domains, calcium binding triggers the natively unstructured domain to adopt a beta roll structure. Here we present an in vitro Forster resonance energy transfer (FRET)-based method for the investigation of the conformational behavior of an RTX domain from the Bordetella pertussis adenylate cyclase consisting of nine repeat units.

View Article and Find Full Text PDF

Hydrophobins are a group of surface-active fungal proteins known to adsorb to the air/water interface and self-assemble into highly crystalline films. We characterized the self-assembled protein films of two hydrophobins, HFBI and HFBII from Trichoderma reesei, directly at the air/water interface using Brewster angle microscopy, grazing-incidence X-ray diffraction, and reflectivity. Already in zero surface pressure, HFBI and HFBII self-assembled into micrometer-sized rafts containing hexagonally ordered two-dimensional crystallites with lattice constants of 55 A and 56 A, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrophobins are small, surface-active proteins known for their unique ability to self-assemble at interfaces between water and fats, altering the properties of surfaces.
  • Researchers identified a novel hydrophobin from the edible mushroom Grifola frondosa, named HGFI, which has a mature protein sequence of 83 amino acids after the removal of a longer signal sequence.
  • Imaging techniques such as atomic force microscopy revealed the formation of rodlet structures in HGFI under specific conditions, suggesting that repeated compression of monolayers facilitates their alignment and development.
View Article and Find Full Text PDF

Hydrophobins are a group of very surface-active, fungal proteins known to self-assemble on various hydrophobic/hydrophilic interfaces. The self-assembled films coat fungal structures and mediate their attachment to surfaces. Hydrophobins are also soluble in water.

View Article and Find Full Text PDF

Nature has evolved proteins and enzymes to carry out a wide range of sophisticated tasks. Proteins modified with functional polymers possess many desirable physical and chemical properties and have applications in nanobiotechnology. Here we describe multivalent Newkome-type polyamine dendrons that function as synthetic DNA binding domains, which can be conjugated with proteins.

View Article and Find Full Text PDF

Hydrophobins are small fungal surface active proteins that self-assemble at interfaces into films with nanoscale structures. The hydrophobin HFBI from Trichoderma reesei has been shown to associate in solution into tetramers but the role of this association on the function of HFBI has remained unclear. We produced two HFBI variants that showed a significant shift in solution association equilibrium towards the tetramer state.

View Article and Find Full Text PDF