Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds.
View Article and Find Full Text PDFTrends Pharmacol Sci
September 2022
Achieving complete nanoparticle (NP) clearance is a key consideration in the design of safe and translatable nanomedicines. Renal-clearable nano formulations must encompass the beneficial nanoscale functionalities whilst exhibiting clearance profiles like those of small-molecule therapeutics. Recent developments in the field have enabled the growth of novel renal-clearable NPs with transformable sizes that take advantage of alternative clearance mechanisms to achieve controlled and efficient renal excretion to improve potential clinical translation.
View Article and Find Full Text PDFDespite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions.
View Article and Find Full Text PDFNanomedicine is seen as a potential central player in the delivery of personalized medicine. Biocompatibility issues of nanoparticles have largely been resolved over the past decade. Despite their tremendous progress, less than 1% of applied nanosystems can hit their intended target location, such as a solid tumor, and this remains an obstacle to their full ability and potential with a high translational value.
View Article and Find Full Text PDFNoble metals comprise any of several metallic chemical elements that are outstandingly resistant to corrosion and oxidation, even at elevated temperatures. This group is not strictly defined, but the tentative list includes ruthenium, rhodium, palladium, silver, osmium, iridium, platinum and gold, in order of atomic number. The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community and have led to an unprecedented expansion of research and exploration of applications in biotechnology and biomedicine.
View Article and Find Full Text PDFMetastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy.
View Article and Find Full Text PDFSlippery liquid-infused porous surfaces (SLIPS) have potential impact on a wide range of industries, including healthcare, food packaging, and automobile. A tremendouseffort has been focused on developing novel fabrication methods for making SLIPS. However, current fabrication methods usually involve harsh conditions and complicated postfabrication modifications or are limited to specific substrates.
View Article and Find Full Text PDFThe development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.
View Article and Find Full Text PDF2,2'-Bipyridine (bpy), 1,10-phenanthroline (phen) and related bidentate ligands often inhibit homogeneous Pd-catalyzed aerobic oxidation reactions; however, certain derivatives, such as 4,5-diazafluoren-9-one (DAF), can promote catalysis. In order to gain insight into this divergent ligand behavior, eight different bpy- and phen-derived chelating ligands have been evaluated in Pd(OAc)-catalyzed oxidative cyclization of ()-4-hexenyltosylamide. Two of the ligands, DAF and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Mebpy), support efficient catalytic turnover, while the others strongly inhibit the reaction.
View Article and Find Full Text PDF