Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO).
View Article and Find Full Text PDFβ-1,3-glucans are a kind of natural polysaccharide with immunomodulatory, antitumor, and anti-inflammatory properties. Curdlan, as the simplest linear β-1,3-glucan, possesses a variety of biological activities and thermogelation properties. However, due to the complexity and variability of the conformations of curdlan, the exact structure-activity relationship remains unclear.
View Article and Find Full Text PDFElucidating the structure-activity relationship of curdlan is hampered by a lack of characterization with unique specific conformations (i.e., single- or triple-helix).
View Article and Find Full Text PDFThe effects of salts on protein systems are not yet fully understood. We investigated the ionic dynamics of three halide salts (NaI, NaBr, and NaCl) with two protein models, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEA), using multinuclear NMR, dispersion corrected density functional theory (DFT-D) calculations and dynamic light scattering (DLS) methods. The variation in ionic line-widths and chemical shifts induced by the polymers clearly illustrates that anions rather than cations interact directly with the polymers.
View Article and Find Full Text PDFThe low-temperature dissolving mechanism of chitin/chitosan in the alkali (LiOH, NaOH and KOH) aqueous solvents has not been well established yet. As revealed by our XRD and NMR methods, the prepared deacetylated chitins can be categorized as chitin (DA = 0.94-0.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2017
Cononsolvency of poly(N-isopropylacrylamide) (PNIPAM) gels in binary mixed solvents (water-acetone and water-DMSO) has been comparatively investigated by H HR-MAS NMR spectroscopy. The results demonstrate that, although the addition of both acetone and DMSO gives rise to cononsolvency behavior, PNIPAM preferentially interacts with acetone rather than DMSO in a water-rich regime, regardless of whether the temperature is above or below the volume phase transition temperature (VPTT). It suggests that the preferential adsorption of the additive cannot be deemed as a prerequisite for the cononsolvency in water-rich mixtures.
View Article and Find Full Text PDFUnderstanding the morphological transition dynamics related to the hydrophilic-hydrophobic interface has been a challenge due to the lack of an effective evaluation method. Herein, nuclear magnetic resonance spectroscopy was employed to study the morphological transition related chain collapse of poly(N,N'-diethylaminoethylmethacrylate)-b-poly(N-isopropylacrylamide) (PDEAEMA-b-PNIPA) and poly(N,N'-dimethylaminoethylmethacrylate)-b-poly(N-isopropylacrylamide) (PDMAEMA-b-PNIPA) and was proved to be a powerful technique in morphological transition mechanism studies once combined with dynamic light scattering and transmission electron microscopy. Unlike the cooperative coil collapse of two blocks in the PDMAEMA-b-PNIPA alkaline solution upon heating which induces the assembly of a nanostructure (∼200 nm) with a hydrophobic core containing both collapsed PDMAEMA and PNIPA segments and a hydrophilic surface part consisting of un-shrunk PDMAEMA and PNIPA segments, PDEAEMA-b-PNIPA with a low-temperature core-shell micelle structure showed a micelle-vesicle transition due to temperature-induced inhomogeneous-collapse of PNIPA.
View Article and Find Full Text PDFPreferential interactions of solvents with poly(N-isopropylacrylamide) (PNIPAM) gel networks in binary water/alcohol (water/methanol and water/ethanol) mixtures have been investigated using variable-temperature high-resolution 1H MAS NMR. NMR results for PNIPAM gel in the binary solvents reveal the existence of two distinct types of water/alcohol mixtures above the LCST: confined binary solvents bound inside the gel, and free binary solvents expelled from the gel. It is interesting to find that the alcohol concentration in confined solution is significantly higher than that in free solution.
View Article and Find Full Text PDF