This study quantitatively assesses the resilience of the urban transport system in Changchun under extreme climatic conditions, focusing on the impacts of natural disasters such as snowstorms, strong winds and extreme low temperatures on the transport system. The vulnerability, exposure, and emergency recovery capacity of the transport system in Changchun were analyzed by constructing a comprehensive assessment framework combining multi-criteria decision analysis (MCDM) and geographic information system (GIS). Based on the meteorological and traffic data of Changchun City in the past 10 years, key indicators such as traffic network density, emergency resource distribution, traffic flow, and extreme weather frequency were selected in this study.
View Article and Find Full Text PDFThis study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity.
View Article and Find Full Text PDFThe interfacial liquid, situated in proximity to an electrode or catalyst, plays a vital role in determining the activity and selectivity of crucial electrochemical reactions, including hydrogen evolution, oxygen evolution/reduction, and carbon dioxide reduction. Thus, there has been a growing interest in better understanding the behavior and the catalytic effect of its constituents. This minireview examines the impact of interfacial liquids on electrocatalysis, specifically the effects of water molecules and ionic species present at the interface.
View Article and Find Full Text PDF