This study aims to critically assess different micromechanical analysis models applied to carbon-fiber-reinforced plastic (CFRP) composites, employing micromechanics-based homogenization to accurately predict their effective properties. The paper begins with the simplest Voigt and Reuss models and progresses to more sophisticated micromechanics-based models, including the Mori-Tanaka and Method of Cells (MOC) models. It provides a critical review of the areas in which these micromechanics-based models are effective and analyses of their limitations.
View Article and Find Full Text PDFThis study describes the numerical simulation results of aluminum/carbon-fiber-reinforced plastic (CFRP) hybrid joint parts using the explicit finite-element solver LS-DYNA, with a focus on capturing the failure behavior of composite laminates as well as the adhesive capacity of the aluminum-composite interface. In this study, two types of adhesive modeling techniques were investigated: a tiebreak contact condition and a cohesive zone model. Adhesive modeling techniques have been adopted as a widely commercialized model of structural adhesives to simulate adhesive failure based on fracture mechanics.
View Article and Find Full Text PDF