Publications by authors named "Geunho Kim"

Lumpy skin disease (LSD), caused by the LSD virus (LSDV), a dsDNA virus of the genus Capripoxvirus, represents a significant cross-border infectious threat, particularly impacting cattle and water buffaloes through transmission by blood-feeding insects. Traditionally endemic to Southern Africa, LSD has rapidly spread over the past decade through the Middle East to Eastern Europe and China, reaching Korea in October 2023. This outbreak prompted a nationwide vaccination campaign, addressing both the disease's severe economic impact and its status as a notifiable disease under the World Organisation for Animal Health.

View Article and Find Full Text PDF

An intelligent optimization technology was proposed to mitigate prevalent multi-defects, particularly failure, wrinkling, and springback in sheet metal forming. This method combined deep neural networks (DNNs), genetic algorithms (GAs), and Monte Carlo simulation (MCS), collectively as DNN-GA-MCS. Our primary aim was to determine intricate process parameters while elucidating the intricate relationship between processing methodologies and material properties.

View Article and Find Full Text PDF
Article Synopsis
  • - The study assesses the concentration guideline levels for safe reuse of sites at Korea Research Reactor Unit 1 and 2.
  • - The researchers derived distribution coefficients for two radioactive isotopes, Co-60 (6,128 mL/g) and Sr-90 (86.0 mL/g), using site-specific soil data.
  • - The derived concentration guideline levels (DCGLs) for Co-60 and H-3 are set at 0.053 Bq/g and 45.0 Bq/g respectively, based on radiation dose analysis by age group.
View Article and Find Full Text PDF

The purpose of this study is to apply a probabilistic method to derive the derived concentration guideline levels for decommissioning of Korea Research Reactor 1 and 2. A total of seven parameters were found to be the sensitive parameters of the target nuclides. The DCGLs of Co-60 and H-3 were 0.

View Article and Find Full Text PDF

In this study, a silicon carbon nitride (SiCN) thin film was grown with a thickness of 5~70 nm by the plasma-enhanced chemical vapor deposition (PECVD) method, and the oxygen permeation characteristics were analyzed according to the partial pressure ratio (PPR) of tetramethylsilane (4MS) to the total gas amount during the film deposition. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and X-ray reflectivity (XRR) were used to investigate the composition and bonding structures of the SiCN film. An atomic force microscope (AFM) was used to examine the surface morphology of the SiCN films to see the porosity.

View Article and Find Full Text PDF

The increase in the number and complexity of process levels in semiconductor production has driven the need for the development of new measurement methods that can evaluate semiconductor devices at the critical dimensions of fine patterns and simultaneously inspect nanoscale contaminants or defects. However, conventional optical inspection methods often fail to resolve device patterns or defects at the level of tens of nanometers required for device development owing to their diffraction-limited resolutions. In this study, we used the stochastic optical reconstruction microscopy (STORM) technique to image semiconductor nanostructures with feature sizes as small as 30 nm and detect individual 20 nm-diameter contaminants.

View Article and Find Full Text PDF

Developing methods to improve the regenerative capacity of somatic stem cells (SSCs) is a major challenge in regenerative medicine. Here, we propose the forced expression of LIN28A as a method to modulate cellular metabolism, which in turn enhances self-renewal, differentiation capacities, and engraftment after transplantation of various human SSCs. Mechanistically, in undifferentiated/proliferating SSCs, LIN28A induced metabolic reprogramming from oxidative phosphorylation (OxPhos) to glycolysis by activating PDK1-mediated glycolysis-TCA/OxPhos uncoupling.

View Article and Find Full Text PDF

A steady supply of platelets maintains their levels in the blood, and this is achieved by the generation of progeny from platelet intermediates. Using systematic super-resolution microscopy, we examine the ultrastructural organization of various organelles in different platelet intermediates to understand the mechanism of organelle redistribution and sorting in platelet intermediate maturation as the early step of platelet progeny production. We observe the dynamic interconversion between the intermediates and find that microtubules are responsible for controlling the overall shape of platelet intermediates.

View Article and Find Full Text PDF

Understanding the platelet activation molecular pathways by characterizing specific protein clusters within platelets is essential to identify the platelet activation state and improve the existing therapies for hemostatic disorders. Here, we employed various state-of-the-art super-resolution imaging and quantification methods to characterize the platelet spatiotemporal ultrastructural change during the activation process due to phorbol 12-myristate 13-acetate (PMA) stimuli by observing the cytoskeletal elements and various organelles at nanoscale, which cannot be done using conventional microscopy. Platelets could be spread out with the guidance of actin and microtubules, and most organelles were centralized probably due to the limited space of the peripheral thin regions or the close association with the open canalicular system (OCS).

View Article and Find Full Text PDF

Most of the existing copper indium gallium diselenide (CIGS) thin film solar cells are based on a cadmium sulfide (CdS) buffer layer fabricated using a chemical bath deposition (CBD) process. However, due to environmental pollution caused by material toxicity and the unique wet process's incompatibility with the vacuum process, many studies are now being actively carried out on nontoxic buffer layers. In this study, to replace CdS buffer layers, zinc sulfide (ZnS) buffer layers with a big band gap and a low optical loss at a short wavelength were fabricated using a magnetron sputtering system.

View Article and Find Full Text PDF

We fabricated zinc sulfide (ZnS) buffer layers with a great band gap and small light loss at a short wavelength, and then applied them to copper indium gallium sulphur-selenide (CIGS) thin film solar cells. A CIGS evaporation system was used for fabrication of the CIGS thin films, and a thickness monitor was used to check the evaporation rate at each source. The evaporation rate and deposition time were adjusted to change the composition ratio of the thin films.

View Article and Find Full Text PDF

N-acetylcysteine (NAC), an antioxidant and a precursor of glutathione, is currently in clinical use for various pathological conditions. No data is available as to the relationship between NAC and muscular cell proliferation or muscular degenerative disease. In this study, we assessed the effect of NAC on growth of L6 myoblasts, a rat skeletal muscle cell line, under normal or bupivacaine-treated condition.

View Article and Find Full Text PDF