Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel.
View Article and Find Full Text PDFThe fabrication of 3D bioconstructs using bioprinters will advance the field of regenerative medicine owing to its ability to facilitate clinical treatments. Additional stimulations have been applied to the bioconstructs to guide cells laden in the bioconstructs. However, the conventional bench-to-bedside delivery based on separate bioprinting and biostimulating processes may increase the risks of contamination and shape discordance owing to the considerably long process involved.
View Article and Find Full Text PDFCell-laden structures play a pivotal role in various tissue engineering applications, particularly in tissue restoration. Interactions between cells within bioprinted structures are crucial for successful tissue development and regulation of stem cell fate through intricate cell-to-cell signaling pathways. In this study, we developed a new technique that combines polyethylene glycol (PEG)-infused submerged bioprinting with a stretching procedure.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting, an effective technique for building cell-laden structures providing native extracellular matrix environments, presents challenges, including inadequate cellular interactions. To address these issues, cell spheroids offer a promising solution for improving their biological functions. Particularly, minispheroids with 50-100 μm diameters exhibit enhanced cellular maturation.
View Article and Find Full Text PDFCell spheroids have shown great promise as tools for creating effective three-dimensional (3D) tissue models, facilitating tissue reconstruction and organoid development, due to their high cell density and efficient cellular interactions. However, a significant challenge persists in creating large-scale tissue structures with a 3D geometrical architecture using spheroids, due to the continual condensation and reorganization of cells and their environments. The spherical cell aggregates (pseudo-cell spheroids) or macroscale cell aggregates were obtained by coating each adipose-derived stem cell (hASC) with methacrylated collagen (Col-Ma).
View Article and Find Full Text PDFThe integration of tumor-on-a-chip technology with mini-tissues or organoids has emerged as a powerful approach in cancer research and drug development. This review provides an extensive examination of the diverse biofabrication methods employed to create mini-tissues, including 3D bioprinting, spheroids, microfluidic systems, and self-assembly techniques using cell-laden hydrogels. Furthermore, it explores various approaches for fabricating organ-on-a-chip platforms.
View Article and Find Full Text PDFThis study investigated mechanical stimulation combined with three-dimensional (3D) bioprinting as a new approach for introducing biophysical and biological cues for tissue regeneration. A blade-casting method in conjunction with bioprinting was employed to fabricate bioengineered skeletal muscle constructs using a bioink composed of C2C12 myoblasts and collagen type-I. Various printing process parameters were selected and optimized to achieve a highly organized cell alignment within the constructs.
View Article and Find Full Text PDF3D bioprinting is a technology that enables the precise and controlled deposition of cells and an artificial extracellular matrix (ECM) to create functional tissue constructs. However, current 3D bioprinting methods still struggle to obtain mechanically stable and unique cell-morphological structures, such as fully aligned cells. In this study, we propose a new 3D bioprinting approach that utilizes a high concentration of bioink without cells to support mechanical properties and drag flow to fully align cells in a thin bath filled with cell-laden bioink, resulting in a hybrid cell-laden construct with a mechanical stable and fully aligned cell structure.
View Article and Find Full Text PDFThe fabrication of highly porous cell-loaded structures in tissue engineering applications has been a challenging issue because non-porous cell-laden struts can cause severe cell necrosis in the middle region owing to poor transport of nutrients and oxygen. In this study, we propose a versatile handheld 3D printer for the effective fabrication of porous cell-laden methacrylated gelatin (GelMa) with high porosity (≈97%) by air injection and a bubble-making system using mesh filters through which a mixture of air/GelMa bioink is passed. In particular, the pore size and foamability of the cell constructs could be manipulated using various processing parameters (rheological properties of GelMa, filter size and number, and air-bioink volume ratio).
View Article and Find Full Text PDFA variety of artificial skin scaffolds, including 3D-bioprinted constructs, have been widely studied for regenerating injured skin tissue. Here, we devised a new composite biomaterial ink using fish-skin-based decellularized extracellular matrices (dECM) from tilapia and cod fish. The composition of the biocomposite mixture was carefully selected to obtain a mechanically stable and highly bioactive artificial cell construct.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is a highly effective technique for fabricating cell-loaded constructs in tissue engineering. However, the versatility of fabricating precise and complex cell-loaded hydrogels is limited owing to the poor crosslinking ability of cell-containing hydrogels. Herein, we propose an optic-fiber-assisted bioprinting (OAB) process to efficiently crosslink methacrylated hydrogels.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration (IVDD) is a common cause of chronic low back pain (LBP) and a socioeconomic burden worldwide. Conservative therapies and surgical treatments provide only symptomatic pain relief without promoting intervertebral disc (IVD) regeneration. Therefore, the clinical demand for disc regenerative therapies for disc repair is high.
View Article and Find Full Text PDFBioprinted cell constructs have been investigated for regeneration of various tissues. However, poor cell-cell interactions have limited their utility. Although cell-spheroids offer an alternative for efficient cell-cell interactions, they complicate bioprinting.
View Article and Find Full Text PDFThe esophagus exhibits peristalsis via contraction of circularly and longitudinally aligned smooth muscles, and esophageal replacement is required if there is a critical-sized wound. In this study, we proposed to reconstruct esophageal tissues using cell electrospinning (CE), an advanced technique for encapsulating living cells into fibers that allows control of the direction of fiber deposition. After treatment with transforming growth factor-β, mesenchymal stem cell-derived smooth muscle cells (SMCs) were utilized for cell electrospinning or three-dimensional bioprinting to compare the effects of aligned micropatterns on cell morphology.
View Article and Find Full Text PDFCore-sheath microfibrous structures are widely used in various tissue engineering applications and drug delivery systems. However, the fabrication of the various core-sheath structures using a 3D printing process supplemented with a coaxial nozzle has been challenging due to the center positioning of the core nozzle enclosed in the bigger shell nozzle. In this work, we developed a new 3D printing process using an alginate-based bioink (a mixture of photo-crosslinkable hydrogel and alginate) and its in situ crosslinking process within a single glass nozzle of the 3D printer.
View Article and Find Full Text PDFCorrection for 'Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and cellular activities' by HyeongJin Lee , , 2014, , 5785-5798, https://doi.org/10.1039/c4tb00931b.
View Article and Find Full Text PDFProbiotic species are known to exert health benefits in hosts when administered in adequate quantities. A systematic safety assessment of the strains must be performed before the strains can be designated as probiotics for human consumption. In this study, we selected IDCC 3901, IDCC 3101, IDCC 3801, and IDCC 3551 as representative probiotic strains and investigated their probiotic properties and potential risks through phenotypic and genomic characterization.
View Article and Find Full Text PDFBioeng Transl Med
September 2022
Extrusion-based bioprinting is one of the most effective methods for fabricating cell-laden mesh structures. However, insufficient cellular activities within the printed cylindrical cell-matrix blocks, inducing low cell-to-cell interactions due to the disturbance of the matrix hydrogel, remain to be addressed. Hence, various sacrificial materials or void-forming methods have been used; however, most of them cannot solve the problem completely or require complicated fabricating procedures.
View Article and Find Full Text PDFBioeng Transl Med
September 2022
In the musculoskeletal system, the myotendinous junction (MTJ) is optimally designed from the aspect of force transmission generated from a muscle through a tendon onto the bone to induce movement. Although the MTJ is a key complex tissue in force transmission, the realistic fabrication, and formation of complex tissues can be limited. To obtain the MTJ construct, we prepared two bioinks, muscle- and tendon-derived decellularized extracellular matrix (dECM), which can induce myogenic and tenogenic differentiation of human adipose-derived stem cells (hASCs).
View Article and Find Full Text PDFIn bone tissue engineering, efficient formation of vascularized bone tissue is a challenging issue. Here, we introduce a new strategy for effectively using multiple cells laden in a hybrid structure, such as endothelial cell (EC) spheroids and homogeneously distributed human adipose stem cells (hASCs) for bone regeneration. To fabricate the EC spheroids, cell-mixed mineral oil was used, and microscale droplets of the cell mixture were interlayered between the bioprinted hASC-laden struts.
View Article and Find Full Text PDFInt J Biol Macromol
October 2022
Poly (L-lactic acid) (PLLA)-based biocomposites have been used in tissue engineering applications because of their reasonable biocompatibility and mechanical properties. However, the imperfect bioactive and mechanical properties of the composite make it difficult to be used in the region of bone defects that require high load-bearing. Therefore, this study introduced two fabricating strategies to induce mechanically and biologically enhanced hydroxyapatite (HA)/PLLA biocomposites.
View Article and Find Full Text PDF