Publications by authors named "Geun-Cheol Gil"

Human fibrinogen is a biomaterial used in surgical tissue sealants, scaffolding for tissue engineering, and wound healing. Here we report on the post-translational structure and functionality of recombinant human FI (rFI) made at commodity levels in the milk of transgenic dairy cows. Relative to plasma-derived fibrinogen (pdFI), rFI predominantly contained a simplified, neutral carbohydrate structure and >4-fold higher levels of the γ'-chain transcriptional variant that has been reported to bind thrombin and Factor XIII.

View Article and Find Full Text PDF

We demonstrate use of restricted access media with reversed phase functionality (RAM-RP) for analysis of low molecular weight proteins and peptides in mouse serum (75 μl) using a custom designed modular automated processing system (MAPS). RAM-RP fractionation with simultaneous removal of high molecular weight and high abundance proteins is integrated with a follow-on buffer exchange module (BE) to ensure compatibility with subsequent processing steps (trypsin digestion and intact peptide separation prior to mass spectrometric analysis). The high sample capacity afforded by chromatographic methods generates enough sample to achieve comprehensive serum peptidome identification (357 proteins) through tandem mass spectrometric analysis of both intact and digested peptides.

View Article and Find Full Text PDF

Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability.

View Article and Find Full Text PDF

Purpose: To investigate the expression of alpha-Gal or unidentified non-Gal antigens in pig corneal endothelial cells and keratocytes, we performed the qualitative and quantitative analysis by using mass spectrometry.

Methods: The N-glycans from common adult pig corneal endothelial cells and keratocytes cultured in vitro were directly analyzed by using mass spectrometric approaches. In addition, immunochemical staining was added to confirm the non-Gal antigen expression in pig corneal cells.

View Article and Find Full Text PDF

N-glycan structures released from miniature pig endothelial and islet cells were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), negative ion electrospray ionization (ESI) MS/MS and normal-phase high performance liquid chromatography (NP-HPLC) combined with exoglycosidase digestion. Totally, the identified structures were 181 N-glycans including 129 sialylated and 18 alpha-galactosylated glycans from pig endothelial cells and 80 N-glycans including 41 sialylated and one alpha-galactosylated glycans from pig islet cells. The quantity of the alpha-galactosylated glycans from pig islet cells was certainly neglectable compared to pig endothelial cells.

View Article and Find Full Text PDF

Human protein C (hPC) is glycosylated at three Asn-X-Ser/Thr and one atypical Asn-X-Cys sequons. We have characterized the micro- and macro-heterogeneity of plasma-derived hPC and compared the glycosylation features with recombinant protein C (tg-PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N-glycans of hPC are complex di- and tri-sialylated structures, and we measured 78% site occupancy at Asn-329 (the Asn-X-Cys sequon).

View Article and Find Full Text PDF

Quality control and assurance of glycan profiles of a recombinant glycoprotein from lot to lot is a critical issue in the pharmaceutical industry. To develop an easy and simple quantitative and qualitative glycan profile method based on matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), the modification with Girard's reagent T (GT) was exploited. Because GT-derivatized quantification of oligosaccharides using MALDI-TOF MS is possible only with neutral glycans, sialylated glycans are not subjected to quantitative analysis with MALDI-TOF MS.

View Article and Find Full Text PDF

The major barrier in transplantation of pig organs into humans is the presence of surface carbohydrate antigens (e.g., the Gal alpha 1-3 Gal beta 1-4GlcNAc-R (alpha-Gal) epitope) expressed on pig endothelial cells.

View Article and Find Full Text PDF

Quantification of oligosaccharides is of great importance to investigate variations or changes in the glycans of glycoconjugates. Mass spectrometry (MS) has been widely applied to identification and structural analysis of complex oligosaccharides. However, quantification using MS alone is still quite challenging due to heterogeneous charge states and different ionization efficiency of various types of oligosaccharides.

View Article and Find Full Text PDF

Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties.

View Article and Find Full Text PDF

Glycan recognition leading to cell-cell interactions, signaling, and immune responses is mediated by various glycan-binding proteins (GBPs) showing highly diverse ligand specificities. We describe here a rapid glycan immobilization technique via 4-hydrazinobenzoic acid (HBA)-functionalized beads and its application to high-throughput screening of miniature pig kidney N-glycan-binding proteins by using a mass-spectrometric approach. Without any derivatization steps, the purified pig kidney N-glycans were directly immobilized on to HBA-functionalized beads and subsequently used to identify GBPs from human serum.

View Article and Find Full Text PDF

Transgenic animal bioreactors can be engineered to make gram per liter quantities of complex recombinant glycoproteins in milk. However, little is known about the limitations in post-translational processing that occurs for very complex proteins and how this impacts the task of purification. We report on the purification of recombinant factor IX (rFIX) from the milk of transgenic pigs having an expression level of 2-3 g rFIX/(l(-1) h(-1)), an expression level that is about 20-fold higher than previously reported.

View Article and Find Full Text PDF

A mediator-less microbial fuel cell (MFC) was used as a biochemical oxygen demand (BOD) sensor in an amperometric mode for real-time wastewater monitoring. At a hydraulic retention time of 1.05 h, BOD values of up to 100 mg/l were measured based on a linear relationship, while higher BOD values were measured using a lower feeding rate.

View Article and Find Full Text PDF

A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing.

View Article and Find Full Text PDF

A mediator-less microbial fuel cell was optimized in terms of various operating conditions. Current generation was dependent on several factors such as pH, resistance, electrolyte used, and dissolved oxygen concentration in the cathode compartment. The highest current was generated at pH 7.

View Article and Find Full Text PDF

A genetically engineered bioluminescent bacterium (lac::luxCDABE) was immobilized to develop a whole cell biosensor for the detection of toxic gaseous chemicals. The toxicity of chemicals can be evaluated through the bioluminescent reaction as it reduces in intensity when the cells experience toxic or lethal conditions. This whole cell biosensor was fabricated, using an immobilization technique utilizing solid agar medium, for the measurement of toxicity through direct contact of the cells with the gas.

View Article and Find Full Text PDF

Optimization of the dilution rates has been studied to provide an enhanced sensitivity to toxicity by several recombinant bioluminescent Escherichia coli strains, TV1061 (grpE::luxCDABE), DPD2794 (recA::luxCDABE) and DPD2540 (fabA::luxCDABE), in the two-stage continuous toxicity monitoring system. It was found that the sensitivity of both TV1061 and DPD2794 to a pulse injection of phenol and mitomycin C increased with a decrease in the dilution rate. The sensitivity, however, for all the strains to step injections of the toxic chemicals was found to increase with an increase in the dilution rate up to a certain dilution rate and then decreased, mainly due to the rapid washing out of the injected chemicals.

View Article and Find Full Text PDF