Cardiomyocytes differentiated from human pluripotent stem cells provide promising tools for screening of cardiotoxic drugs. For evaluation of human pluripotent stem cell-derived cardiomyocytes for cardiotoxicity test, in the present study, human embryonic stem cells (hESCs) were differentiated to cardiomyocytes, followed by metabolic selection to enrich the differentiated cardiomyocytes. The highly purified hESC-derived cardiomyocytes (hESC-CMs) expressed several cardiomyocyte-specific markers including cTnT, MLC2a, and α-SA, but not pluripotency markers, such as OCT4 and NANOG.
View Article and Find Full Text PDFDiabetes is one of the most common human diseases and 15% of the 200 million diabetics worldwide suffer from diabetic wounds. Development of new therapeutic agents is needed for treatment of diabetic wounds. Wound healing is mediated by multiple steps, including inflammation, epithelialization, neoangiogenesis, and granulation.
View Article and Find Full Text PDFProstate cancer is the most frequently diagnosed malignancy and the second leading cause of cancer mortality among men in the United States. Accumulating evidence suggests that lysophosphatidic acid (LPA) serves as an autocrine/paracrine mediator to affect initiation, progression and metastasis of prostate cancer. In the current study, we demonstrate that LPA stimulates migration and proliferation of highly metastatic human prostate cancer, PC-3M-luc-C6 cells.
View Article and Find Full Text PDFEndothelial colony-forming cells (ECFCs) are recruited to the sites of ischemic injury in order to contribute to neovascularization and repair of injured tissues. However, therapeutic potential of ECFCs is limited due to low homing and engraftment efficiency of transplanted ECFCs. The G-protein-coupled formyl peptide receptor (FPR) 2 has been implicated in regulation of inflammation and angiogenesis, while the role of FPR2 in homing and engraftment of ECFCs and neovascularization in ischemic tissues has not been fully defined.
View Article and Find Full Text PDFReprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs.
View Article and Find Full Text PDFBackground: Transcriptional co-activator with PDZ-binding motif (TAZ), a downstream effector of the Hippo pathway, has been reported to regulate organ size, tissue homeostasis, and tumorigenesis by acting as a transcriptional co-activator. Lysophosphatidic acid (LPA) is a bioactive lipid implicated in tumorigenesis and metastasis of ovarian cancer through activation of G protein-coupled receptors. However, the involvement of TAZ in LPA-induced tumorigenesis of ovarian cancer has not been elucidated.
View Article and Find Full Text PDF