Publications by authors named "Geun Hyoung Ha"

Mesenchymal stem cells (MSCs) directly differentiate into neurons and endothelial cells after transplantation, and their secretome has considerable potential for treating brain injuries. Previous studies have suggested that the effects of MSCs priming with exposure to hypoxia, cytokines, growth factors, or chemical agents could optimize the paracrine potency and therapeutic potential of MSCs. Studies have suggested that thrombin-primed Wharton's Jelly-derived mesenchymal stem cells (Th.

View Article and Find Full Text PDF

Mismatches between pre-clinical and clinical results of stem cell therapeutics for ischemic stroke limit their clinical applicability. To overcome these discrepancies, precise planning of pre-clinical experiments that can be translated to clinical trials and the scientific elucidation of treatment mechanisms is important. In this study, adult human neural stem cells (ahNSCs) derived from temporal lobe surgical samples were used (to avoid ethical and safety issues), and their therapeutic effects on ischemic stroke were examined using middle cerebral artery occlusion animal models.

View Article and Find Full Text PDF

Background/aim: The present study investigated the oncogenic functions of TACC3 in the progression of gastric cancer (GC).

Materials And Methods: We analysed TACC3 in relation to cell growth, invasion capability, expression of epithelial-mesenchymal transition (EMT)-related markers, and ERK/Akt/cyclin D1 signaling factors. The correlation between the immunohistochemically confirmed expression of TACC3 and clinical factors was also analyzed.

View Article and Find Full Text PDF

Skin aging appears to be the result of overlapping intrinsic (including genetic and hormonal factors) and extrinsic (external environment including chronic light exposure, chemicals, and toxins) processes. These factors cause decreases in the synthesis of collagen type I and elastin in fibroblasts and increases in the melanin in melanocytes. Collagen Type I is the most abundant type of collagen and is a major structural protein in human body tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Histone H2AX has a phosphorylation switch crucial for the DNA damage response, transitioning from pTyr142 to pSer139, with its specific functions still being studied.
  • Research indicates that the constantly present H2AX-pY142, influenced by the WSTF protein, interacts with RNA polymerase II, promoting active transcription in cells that are dividing.
  • The removal of H2AX-pY142 by certain phosphatases halts this interaction, causing transcriptional silencing at damaged DNA sites, while its reintroduction helps facilitate a specific type of DNA repair using active RNA transcripts as templates, thereby supporting genome stability.
View Article and Find Full Text PDF

DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair.

View Article and Find Full Text PDF

The brain-expressed X-linked 4 (BEX4) gene has been recently identified as a mediator of microtubule hyperacetylation through sirtuin 2 inhibition and is highly overexpressed in human cancers. However, the gain-of-function molecular mechanism of the BEX4 gene in human cancers still needs to be elucidated. This study shows that BEX4 colocalizes and interacts with Polo-like kinase 1 (PLK1) at centrosomes, spindle poles, and midbodies, particularly during mitosis.

View Article and Find Full Text PDF

Background/aim: Breast cancer is the most common malignant cancer type in women, and triple-negative breast cancer (TNBC) is an extremely aggressive subtype of breast cancer with poor prognosis rates. The present study investigated the antitumor effect of polo-like kinase 1 (PLK1) inhibitor in combination with the tankyrase-1 (TNKS1) inhibitor on TNBC cells.

Materials And Methods: We evaluated the antitumor effects of combination therapy with PLK1 and TNKS1 inhibitor using cell viability analysis, apoptosis assay and transwell assay for cell invasion and migration in TNBC cells.

View Article and Find Full Text PDF

In spite of the push to identify modifiers of BRCAness, it still remains unclear how tumor suppressor BRCA1 is lost in breast cancers in the absence of genetic or epigenetic aberrations. Mounting evidence indicates that the transforming acidic coiled-coil 3 (TACC3) plays an important role in the centrosome-microtubule network during mitosis and gene expression, and that deregulation of TACC3 is associated with breast cancer. However, the molecular mechanisms by which TACC3 contributes to breast cancer development have yet to be elucidated.

View Article and Find Full Text PDF

Pellino-1 is an E3 ubiquitin ligase acting as a critical mediator for a variety of immune receptor signaling pathways, including Toll-like receptors, interleukin-1 receptor and T-cell receptors. We recently showed that the Pellino-1-transgenic (Tg) mice developed multiple tumors with different subtypes in hematolymphoid and solid organs. However, the molecular mechanism underlying the oncogenic role of Pellino-1 in solid tumors remains unknown.

View Article and Find Full Text PDF

Five brain-expressed X-linked (BEX) gene members (BEX1-5) are arranged in tandem on chromosome X, and are highly conserved across diverse species. However, little is known about the function and role of BEX. This study represents a first attempt to demonstrate the molecular details of a novel oncogene BEX4.

View Article and Find Full Text PDF

Pellino-1 is an E3 ubiquitin ligase that mediates immune receptor signaling pathways. The role of Pellino-1 in oncogenesis of lung cancer was investigated in this study. Pellino-1 expression was increased in human lung cancer cell lines compared with non-neoplastic lung cell lines.

View Article and Find Full Text PDF

BRCA1 is an important player in the DNA damage response signaling, and its deficiency results in genomic instability. A complete loss or significantly reduced BRCA1 protein expression is often found in sporadic breast cancer cases despite the absence of genetic or epigenetic aberrations, suggesting the existence of other regulatory mechanisms controlling BRCA1 protein expression. Herein, we demonstrate that Fyn-related kinase (Frk)/Rak plays an important role in maintaining genomic stability, possibly in part through positively regulating BRCA1 protein stability and function via tyrosine phosphorylation on BRCA1 Tyr1552.

View Article and Find Full Text PDF

The signal-responsive E3 ubiquitin ligase pellino 1 (PELI1) regulates TLR and T cell receptor (TCR) signaling and contributes to the maintenance of autoimmunity; however, little is known about the consequence of mutations that result in upregulation of PELI1. Here, we developed transgenic mice that constitutively express human PELI1 and determined that these mice have a shorter lifespan due to tumor formation. Constitutive expression of PELI1 resulted in ligand-independent hyperactivation of B cells and facilitated the development of a wide range of lymphoid tumors, with prominent B cell infiltration observed across multiple organs.

View Article and Find Full Text PDF

The third member of transforming acidic coiled-coil protein (TACC) family, TACC3, has been shown to be an important player in the regulation of centrosome/microtubule dynamics during mitosis and found to be deregulated in a variety of human malignancies. Our previous studies have suggested that TACC3 may be involved in cervical cancer progression and chemoresistance, and its overexpression can induce epithelial-mesenchymal transition (EMT) by activating the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signal transduction pathways. However, the upstream mechanisms of TACC3-mediated EMT and its functional/clinical importance in human cervical cancer remain elusive.

View Article and Find Full Text PDF

Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer.

View Article and Find Full Text PDF

Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family, essential for mitotic spindle dynamics and centrosome integrity during mitosis. Mounting evidence suggests that deregulation of TACC3 is associated with various types of human cancer. However, the molecular mechanisms by which TACC3 contributes to the development of cancer remain largely unknown.

View Article and Find Full Text PDF

Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency.

View Article and Find Full Text PDF

Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed.

View Article and Find Full Text PDF

Cohesin is a multiprotein complex that establishes sister chromatid cohesion from S phase until mitosis or meiosis. In vertebrates, sister chromatid cohesion is dissolved in a stepwise manner: most cohesins are removed from the chromosome arms via a process that requires polo-like kinase 1 (Plk1), aurora B and Wapl, whereas a minor amount of cohesin, found preferentially at the centromere, is cleaved by separase following its activation by the anaphase-promoting complex/cyclosome. Here, we report that our budding yeast two-hybrid assay identified hsSsu72 phosphatase as a Rad21-binding protein.

View Article and Find Full Text PDF

Activation of the mitotic checkpoint requires the precise timing and spatial organization of mitotic regulatory events, and ensures accurate chromosome segregation. Mitotic checkpoint proteins such as BubR1 and Mad2 bind to Cdc20, and inhibit anaphase-promoting complex/cyclosome(Cdc20)-mediated securin degradation and the onset of anaphase. BubR1 mediates the proper attachment of microtubules to kinetochores, and links the regulation of chromosome-spindle attachment to mitotic checkpoint signaling.

View Article and Find Full Text PDF

The mitotic spindle checkpoint plays a crucial role in regulating accurate chromosome segregation and preventing the adaptation of multiploid progeny cells. Recent reports have indicated that the induction of p53 by mitotic checkpoint activation is essential for protecting cells from abnormal chromosome ploidization caused by mitotic failure. However, although studies have shown that p53 deficiencies arrest mitosis, compromise apoptosis, and may cause profound aneuploidy, the molecular mechanisms leading to p53 induction following mitotic checkpoint activation remain unknown.

View Article and Find Full Text PDF

MAD2 is localized to kinetochores of unaligned chromosomes, where it inactivates the anaphase-promoting complex/cyclosome, thus contributing to the production of a diffusible anaphase inhibitory signal. Disruption of MAD2 expression leads to defects in the mitotic checkpoint, chromosome missegregation, and tumorigenesis. However, the mechanism by which deregulation and/or abnormality of hsMAD2 expression remains to be elucidated.

View Article and Find Full Text PDF

WD repeats are implicated in protein-protein interactions and regulate a wide variety of cellular functions, including chromatin remodeling and transcription. The WD repeats of the Bub3 and Cdc20 kinetochore proteins are important for the physical interactions of these proteins with Mad2 and BubR1 to yield a kinetochore protein complex capable of delaying anaphase by inhibiting ubiquitin ligation via the anaphase-promoting complex/cyclosome. Here, we show that Bub3 and Cdc20 form a complex with histone deacetylases; this interaction appears to confer transcriptional repressor activity in a heterologous DNA-binding context.

View Article and Find Full Text PDF

Two-dimensional gel electrophoresis (2-DE) maps for human stomach tissue proteins have been prepared by displaying the protein components of the tissue by 2-DE and identifying them using mass spectrometry. This will enable us to present an overview of the proteins expressed in human stomach tissues and lays the basis for subsequent comparative proteome analysis studies with gastric diseases such as gastric cancer. In this study, 2-DE maps of soluble fraction proteins were prepared on two gel images with partially overlapping pH ranges of 4-7 and 6-9.

View Article and Find Full Text PDF