Publications by authors named "Geum Sook Hwang"

Introduction: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, notably delta and omicron, has significantly accelerated the global pandemic, worsening conditions worldwide. However, there is a lack of research concerning the molecular mechanisms related to immune responses and metabolism induced by these variants.

Methods: Here, metabolomics combined with transcriptomics was performed to elucidate the immunometabolic changes in the lung of hamsters infected with delta and omicron variants.

View Article and Find Full Text PDF

Background and Purpose This study aimed to explore the relationship between lipidomic domains, particularly free fatty acids (FFAs), and the presence of AF in patients with acute stroke, and to identify mechanisms of AF-associated stroke through genetic studies. Methods A total of 483 patients of stroke in patients without AF (n = 391) and with AF (n = 92) were selected from a prospectively collected stroke registry. Lipidomic profiling was conducted and the lipid components associated with AF were explored using fold-change analyses and clustering.

View Article and Find Full Text PDF

Although immune checkpoint inhibitors (ICIs) have revolutionized immuno-oncology with effective clinical responses, only 30 to 40 % of patients respond to ICIs, highlighting the need for reliable biomarkers to predict and enhance therapeutic outcomes. This study investigated how amino acid, glycolysis, and bile acid metabolism affect ICI efficacy in non-small cell lung cancer (NSCLC) patients. Through targeted metabolomic profiling and machine learning analysis, we identified amino acid metabolism as a key factor, with histidine (His) linked to favorable outcomes and homocysteine (HCys), phenylalanine (Phe), and sarcosine (Sar) linked to poor outcomes.

View Article and Find Full Text PDF

TFE3-rearranged renal cell cancer (tRCC) is a rare form of RCC that involves chromosomal translocation of the Xp11.2 TFE3 gene. Despite its early onset and poor prognosis, the molecular mechanisms of the pathogenesis of tRCC remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how PRMT6, a protein linked to various metabolic processes, interacts with and regulates LXR alpha, which is important for hepatic lipogenesis and lipid metabolism.
  • Researchers found that PRMT6 enhances the promoter activity of SREBP-1c by binding to LXR alpha and methylating it, leading to increased lipogenesis in the liver.
  • The findings suggest that PRMT6 plays a significant role in controlling lipid accumulation in the liver, which could have implications for conditions like non-alcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDF

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway.

View Article and Find Full Text PDF

Intestinal microbiota and their metabolites affect systemic inflammation and kidney disease outcomes. Here, we investigated the key metabolites associated with the acute kidney injury (AKI)-to chronic kidney disease (CKD) transition and the effect of antibiotic-induced microbiota depletion (AIMD) on this transition. In 61 patients with AKI, 59 plasma metabolites were assessed to determine the risk of AKI-to-CKD transition.

View Article and Find Full Text PDF

Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s).

View Article and Find Full Text PDF

An intermittent fasting (IF) regimen has been shown to protect against metabolic dysfunction-associated steatohepatitis (MASH). However, the precise mechanism remains unclear. Here, we explored how IF reduced hepatic lipid accumulation, inflammation, and fibrosis in mice with MASH.

View Article and Find Full Text PDF

This study investigated chronic and repeated sleep deprivation (RSD)-induced neuronal changes in hexosamine biosynthetic pathway/O-linked N-acetylglucosamine (HBP/O-GlcNAc) cycling of glucose metabolism and further explored the role of altered O-GlcNAc cycling in promoting neurodegeneration using an adult zebrafish model. RSD-triggered degenerative changes in the brain led to impairment of memory, neuroinflammation and amyloid beta (Aβ) accumulation. Metabolite profiling of RSD zebrafish brain revealed a significant decrease in glucose, indicating a potential association between RSD-induced neurodegeneration and dysregulated glucose metabolism.

View Article and Find Full Text PDF

Arachidonic and adrenic acids in the membrane play key roles in ferroptosis. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen reveals that darapladib, an inhibitor of Lp-PLA2, synergistically induces ferroptosis in the presence of GPX4 inhibitors.

View Article and Find Full Text PDF

Background: As a leading cause of chronic kidney disease, clinical demand for noninvasive biomarkers of diabetic kidney disease (DKD) beyond proteinuria is increasing. Metabolomics is a popular method to identify mechanisms and biomarkers. We investigated urinary targeted metabolomics in DKD patients.

View Article and Find Full Text PDF

Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how obesity causes hypoxic stress that leads to inflammation and interferon-γ (IFN-γ) production by natural killer (NK) cells in fat tissue, which is not well understood.
  • - Researchers found that low oxygen levels in fatty tissues trigger the release of glutamate and the expression of CXCL12, attracting NK cells and promoting their IFN-γ production through specific receptors.
  • - Blocking certain pathways related to glutamate and IFN-γ in fat cells and NK cells improved obesity-related metabolic issues in mice, suggesting these pathways could be potential targets for obesity treatments in people.
View Article and Find Full Text PDF

Key Points: As a biomarker, urinary metabolites could bridge the gap between genetic abnormalities and phenotypes of diseases. We found that levels of betaine, choline, fumarate, citrate, and glucose were significantly correlated with kidney function and could predict kidney outcomes, providing prognostic biomarkers in CKD.

Background: Because CKD is caused by genetic and environmental factors, biomarker development through metabolomic analysis, which reflects gene-derived downstream effects and host adaptation to the environment, is warranted.

View Article and Find Full Text PDF

Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs.

View Article and Find Full Text PDF

Background & Aims: The beneficial effects of probiotic consumption on age-related decline in cerebral function have been previously reported in the literature; however, the mechanistic link between gut and brain interactions has not yet been fully elucidated. Therefore, this study aimed to identify the role of gut microbiota-derived metabolites in gut-brain interactions via blood metabolomic profiling analysis in clinical trials and in vitro mechanistic studies.

Methods: A randomized, double-blind, placebo-controlled, multicenter clinical trial was conducted in 63 healthy elderly individuals (≥65 years of age).

View Article and Find Full Text PDF

Aim: The lack of longitudinal metabolomics data and the statistical techniques to analyse them has limited the understanding of the metabolite levels related to type 2 diabetes (T2D) onset. Thus, we carried out logistic regression analysis and simultaneously proposed new approaches based on residuals of multiple logistic regression and geometric angle-based clustering for the analysis in T2D onset-specific metabolic changes.

Materials And Methods: We used the sixth, seventh and eighth follow-up data from 2013, 2015 and 2017 among the Korea Association REsource (KARE) cohort data.

View Article and Find Full Text PDF

Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several Escherichia coli mutants that extended lifespan of Caenorhabditis elegans.

View Article and Find Full Text PDF

Unlabelled: Pancreatic ductal adenocarcinoma (PDAC) exhibits severe hypoxia, which is associated with chemoresistance and worse patient outcome. It has been reported that hypoxia induces metabolic reprogramming in cancer cells. However, it is not well known whether metabolic reprogramming contributes to hypoxia.

View Article and Find Full Text PDF

Aims: The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs.

View Article and Find Full Text PDF

To demonstrate the infrared (IR)-based bile analysis as a reliable screening tool for gall bladder (GB) cancer, we analyzed a sample set of 37 diverse bile samples (five normal, 18 GB polyp, six hepatocellular carcinoma (HCC), and eight GB cancer subjects). Bile samples of normal subjects (control) and HCC patients were newly included to examine if IR-based bile analysis could be expanded to identify HCC. Concentrations of three bile acids and eight bile salts in the aqueous phase samples were determined in parallel and lipidomic analysis of nine lipid classes in the organic phase samples was performed using liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • * A study involving 276 Korean individuals analyzed the levels of POPs in human plasma and their correlation with metabolites using advanced NMR techniques and statistical methods.
  • * The results showed that specific metabolites (creatinine, acetate, and formate) were significantly associated with PCB exposure, suggesting these metabolites could serve as potential risk indicators for health effects related to POP exposure.
View Article and Find Full Text PDF

The aqueous solution extracted from raw bile juice is composed primarily of bile salts, with lower levels of bilirubin and its derivatives. Among them, the bilirubin and bilirubin-derived metabolites are the only surface-enhanced Raman scattering (SERS)-active components. An analytical scheme indirectly responsive and able to utilize all bile components, including SERS-inactive bile salts, was explored for SERS-based discrimination of gallbladder (GB) polyp and GB cancer.

View Article and Find Full Text PDF