Publications by authors named "Geubelle P"

Frontal polymerization (FP) has emerged as a rapid and energy-efficient process for fabricating thermoset polymers and composites. In this process, a self-propagating reaction front cures the polymer rapidly by the exothermic heat of polymerization reaction instead of an external heat source. Design for FP-based manufacturing in commercial applications requires more comprehensive characterization and prediction of material evolution and residual deformation throughout the process.

View Article and Find Full Text PDF

Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts. These architectures in synthetic materials have been achieved through deterministic manufacturing strategies such as 3D printing, which require an a priori design and active intervention throughout the process to achieve architectures spanning multiple length scales. Here we harness frontal polymerization spin mode dynamics to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization.

View Article and Find Full Text PDF

Frontal ring-opening metathesis polymerization (FROMP) involves a self-perpetuating exothermic reaction, which enables the rapid and energy-efficient manufacturing of thermoset polymers and composites. Current state-of-the-art reaction-diffusion FROMP models rely on a phenomenological description of the olefin metathesis kinetics, limiting their ability to model the governing thermo-chemical FROMP processes. Furthermore, the existing models are unable to predict the variations in FROMP kinetics with changes in the resin composition and as a result are of limited utility toward accelerated discovery of new resin formulations.

View Article and Find Full Text PDF

Frontal polymerization (FP) is a self-sustaining curing process that enables rapid and energy-efficient manufacturing of thermoset polymers and composites. Computational methods conventionally used to simulate the FP process are time-consuming, and repeating simulations are required for sensitivity analysis, uncertainty quantification, or optimization of the manufacturing process. In this work, we develop an adaptive surrogate deep-learning model for FP of dicyclopentadiene (DCPD), which predicts the evolution of temperature and degree of cure orders of magnitude faster than the finite-element method (FEM).

View Article and Find Full Text PDF

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction.

View Article and Find Full Text PDF

In this Letter, we study the interaction between a self-sustaining exothermic reaction front propagating in a direction perpendicular to that of gravity and the buoyancy-driven convective flow during frontal polymerization (FP) of a low-viscosity monomer resin. As the polymerization front transforms the liquid monomer into the solid polymer, the large thermal gradients associated with the propagating front sustain a natural convection of the fluid ahead of the front. The fluid convection in turn affects the reaction-diffusion (RD) dynamics and the shape of the front.

View Article and Find Full Text PDF

This work investigates experimentally and numerically frontal polymerization in a thermally anisotropic system with parallel copper strips embedded in 1,6-hexanediol diacrylate resin. Both experiments and multiphysics finite element analyses reveal that the front propagation in the thermally anisotropic system is orientation-dependent, leading to variations in the front shape and the front velocity due to the different front-metal strip interaction mechanisms along and across the metal strips. The parameters entering the cure kinetics model used in this work are chosen to capture the key characteristics of the polymerization front, i.

View Article and Find Full Text PDF

Frontal polymerization provides a rapid, economic, and environmentally friendly methodology to manufacture thermoset polymers and composites. Despite its efficiency and reduced environmental impact, the manufacturing method is underutilized due to the limited fundamental understanding of its dynamic control. This work reports the control and patterning of the front propagation in a dicyclopentadiene resin by immersion of phase-changing polycaprolactone particles.

View Article and Find Full Text PDF

Frontal polymerization, which involves a self-propagating polymerizing reaction front, has been considered as a rapid, energy-efficient, and environmentally friendly methodology to manufacture lightweight, high-performance thermoset polymers, and composites. Previous work has reported that the introduction of thermally conductive elements can enhance the front velocity. As follow-up research, the present work investigates this problem more systemically using both numerical and experimental approaches by investigating the front shape, front width, and heat exchange when aluminum and cooper metal strips are embedded in the resin.

View Article and Find Full Text PDF

Recently presented as a rapid and eco-friendly manufacturing method for thermoset polymers and composites, frontal polymerization (FP) experiences thermo-chemical instabilities under certain conditions, leading to visible patterns and spatially dependent material properties. Through numerical analyses and experiments, we demonstrate how the front velocity, temperature, and instability in the frontal polymerization of cyclooctadiene are affected by the presence of poly(caprolactone) microparticles homogeneously mixed with the resin. The phase transformation associated with the melting of the microparticles absorbs some of the exothermic reaction energy generated by the FP, reduces the amplitude and order of the thermal instabilities, and suppresses the front velocity and temperatures.

View Article and Find Full Text PDF

Complex patterns integral to the structure and function of biological materials arise spontaneously during morphogenesis. In contrast, functional patterns in synthetic materials are typically created through multistep manufacturing processes, limiting accessibility to spatially varying materials systems. Here, we harness rapid reaction-thermal transport during frontal polymerization to drive the emergence of spatially varying patterns during the synthesis of engineering polymers.

View Article and Find Full Text PDF

Bioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions.

View Article and Find Full Text PDF

Among advanced manufacturing techniques for fiber-reinforced polymer-matrix composites (FRPCs) which are critical for aerospace, marine, automotive, and energy industries, frontal polymerization (FP) has been recently proposed to save orders of magnitude of time and energy. However, the cure kinetics of the matrix phase, usually a thermosetting polymer, brings difficulty to the design and control of the process. Here, we develop a deep learning model, ChemNet, to solve an inverse problem for predicting and optimizing the cure kinetics parameters of the thermosetting FRPCs for a desired fabrication strategy.

View Article and Find Full Text PDF

Considered as a faster and energy-efficient alternative to conventional manufacturing techniques for thermosetting polymers and composites, frontal polymerization (FP) is built on a thermal equilibrium between the heat generated by the exothermic reaction of the resin system and the heat consumed by the advancing front. However, a heat loss to the surrounding may disrupt this thermal equilibrium and slow down and possibly quench the front. This paper investigates the impact of two types of heat loss to the surrounding on the key characteristics (propagation speed and maximum temperature) of the polymerization front: convective heat loss along the boundary of the reaction channel and contact heat loss at channel-tool plate interfaces.

View Article and Find Full Text PDF

The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs cocrystallized with the GluA2 ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2( Q) (calcium flux experiment).

View Article and Find Full Text PDF

Thermoset polymers and composite materials are integral to today's aerospace, automotive, marine and energy industries and will be vital to the next generation of lightweight, energy-efficient structures in these enterprises, owing to their excellent specific stiffness and strength, thermal stability and chemical resistance. The manufacture of high-performance thermoset components requires the monomer to be cured at high temperatures (around 180 °C) for several hours, under a combined external pressure and internal vacuum . Curing is generally accomplished using large autoclaves or ovens that scale in size with the component.

View Article and Find Full Text PDF

As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e.

View Article and Find Full Text PDF

We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC = 2.

View Article and Find Full Text PDF

Using an elastodynamic boundary integral formulation coupled with a cohesive model, we study the problem of a dynamic rupture front propagating along an heterogeneous plane. We show that small-scale heterogeneities facilitate the supershear transition of a mode-II crack. The elastic pulses radiated during front accelerations explain how microscopic variations of fracture toughness change the macroscopic rupture dynamics.

View Article and Find Full Text PDF

G protein-coupled receptors are the most important drug targets for human diseases. An important number of them remain devoid of confirmed ligands. GPR27 is one of these orphan receptors, characterized by a high level of conservation among vertebrates and a predominant expression in the central nervous system.

View Article and Find Full Text PDF

Background And Purpose: The succinate receptor (formerly GPR91 or SUCNR1) is described as a metabolic sensor that may be involved in homeostasis. Notwithstanding its implication in important (patho)physiological processes, the function of succinate receptors has remained ill-defined because no pharmacological tools were available. We report on the discovery of the first family of potent synthetic agonists.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) represent the most successful receptor family for treating human diseases. Many are poorly characterized with few ligands reported or remain completely orphans. Therefore, there is a growing need for screening-compatible and sensitive assays.

View Article and Find Full Text PDF

We present a granular system whose response under an impact load can be varied from rapidly decaying to almost constant amplitude waves by an external regulator. The system consists of a granular chain of larger spheres surrounded by small spheres, confined in a hollow cylindrical tube and supporting wave propagation along the axis of the cylinder. We demonstrate using numerical simulations that the response can be controlled by applying radial precompression.

View Article and Find Full Text PDF

Uniform planar impact on a two-dimensional square packing of spheres with intruders at interstitial locations is investigated. An equivalent one-dimensional granular chain model is proposed with appropriate scaling and is verified numerically. Numerical observations demonstrate the existence of a new family of plane solitary waves with different profiles at unique combinations of material properties.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface. In this work, we systematically vary SAM end-group functionality and quantify the corresponding effect on interfacial failure between a transfer printed gold (Au) film and a fused silica substrate. SAMs with four different end groups are investigated: 11-amino-undecyltriethoxysilane (ATES), dodecyltriethoxysilane (DTES), 11-bromo-undecyltrimethoxysilane (BrUTMS), and 11-mercapto-undecyltrimethoxysilane (MUTMS).

View Article and Find Full Text PDF