While the molecular and cellular effects of opioids have been extensively studied, the precise mechanisms by which these drugs target specific brain regions over time remain unclear. Similarly, despite well-documented sex differences in opioid responses, the anatomical basis for this sexual dimorphism is not well characterized. To address these questions, we developed an automated, scalable, and unbiased approach for whole-brain anatomical mapping of the neuronal activity marker c-Fos in response to acute morphine exposure.
View Article and Find Full Text PDFIntratelencephalic neurons are a crucial class of cortical principal neurons that heavily innervate the striatum and cortical areas bilaterally. Their extensive cortico-cortical and cortico-striatal connectivity enables sensorimotor integration within the telencephalon, but their role in motor control remains poorly understood. Here, we used a chemogenetic approach to explore the role of intratelencephalic neurons in spontaneous locomotor activity.
View Article and Find Full Text PDFDopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test.
View Article and Find Full Text PDFDopamine neurons signal the salience of environmental stimuli, influencing learning and motivation. However, research has not yet identified whether dopamine neurons also modulate the salience of memory content. Dopamine neuron activity in the ventral tegmental area (VTA) increases in response to novel objects and diminishes as objects become familiar through repeated presentations.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2024
Affective or mood disorders are a leading cause of disability worldwide. The serotonergic system has been heavily implicated in the complex etiology and serves as a therapeutic target. The serotonin transporter (SERT) is a major regulator of serotonin neurotransmission, yet the disease-relevance of impaired SERT function remains unknown.
View Article and Find Full Text PDFAmphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca levels, we employ the fluorescent Ca sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRAB expressed in cocultured "sniffer" cells.
View Article and Find Full Text PDFGlucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice.
View Article and Find Full Text PDFA fundamental concept in neuroscience is the transmission of information between neurons via neurotransmitters, -modulators, and -peptides. For the past decades, the gold standard for measuring neurochemicals in awake animals has been microdialysis (MD). The emergence of genetically encoded fluorescence-based biosensors, as well as optical techniques such as fiber photometry (FP), has introduced technologically distinct means of measuring neurotransmission.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
The dorsal (DS) and ventral striatum (VS) receive dopaminergic projections that control motor functions and reward-related behavior. It remains poorly understood how dopamine release dynamics across different temporal scales in these regions are coupled to behavioral outcomes. Here, we employ the dopamine sensor dLight1.
View Article and Find Full Text PDFRationale: Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown.
Objectives: We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes.
Organic cation transporters (OCTs) facilitate the translocation of catecholamines, drugs and xenobiotics across the plasma membrane in various tissues throughout the human body. OCT3 plays a key role in low-affinity, high-capacity uptake of monoamines in most tissues including heart, brain and liver. Its deregulation plays a role in diseases.
View Article and Find Full Text PDFThe nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca influx via N-type voltage-gated Ca channels.
View Article and Find Full Text PDFNegative urgency describes the tendency for rash and impulsive behaviour during negative emotional states and has been linked to a number of psychiatric disorders. However, there has been limited research on negative urgency as an explanatory mechanism for impulsivity in experimental animals. Such research has important implications for elucidating the neurobiology of negative urgency and thereby the development of future therapeutic interventions.
View Article and Find Full Text PDFDopamine supports locomotor control and higher brain functions such as motivation and learning. Consistently, dopaminergic dysfunction is involved in a spectrum of neurological and neuropsychiatric diseases. Detailed data on dopamine dynamics is needed to understand how dopamine signals translate into cellular and behavioral responses, and to uncover pathological disturbances in dopamine-related diseases.
View Article and Find Full Text PDFWell-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society.
View Article and Find Full Text PDFBin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain.
View Article and Find Full Text PDFThe dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals.
View Article and Find Full Text PDFDysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown.
View Article and Find Full Text PDFSodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today's single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact.
View Article and Find Full Text PDFChemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined.
View Article and Find Full Text PDFThe dopamine transporter utilizes the transmembrane sodium gradient to mediate reuptake of dopamine from the extracellular space. The dopamine transporter can form dimers and possibly also higher order structures in the plasma membrane, and this oligomerization has been implicated in both trafficking and transport. However, we still do not fully understand its biological importance.
View Article and Find Full Text PDFBackground: Work in humans has shown that impulsivity can be advantageous in certain settings. However, evidence for so-called functional impulsivity is lacking in experimental animals.
Aims: This study investigated the contexts in which high impulsive (HI) rats show an advantage in performance compared with mid- (MI) and low impulsive (LI) rats.