Environ Res
January 2023
In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms.
View Article and Find Full Text PDFCurrently, the COVID-19 pandemic has been increasing the consumption of some drugs, such as chloroquine (CQN) and dipyrone (DIP), which are continuously discharged into water resources through domestic sewage treatment systems. The presence of these drugs in water bodies is worrisome due to their high toxicity, which makes crucial their monitoring and removal, especially by means of advanced technologies. Given this scenario, a new adsorbent material was synthesized through the combination of babassu coconut activated carbon and graphene oxide (GAC-GO).
View Article and Find Full Text PDFA distributed parameter model and two lumped parameter models were used in order to find the rate-limiting step in the adsorption process of a herbicide (Diuron) by husks, a possible low-cost adsorbent. For that, four kinetics assays, differentiated by the initial Diuron concentration, were performed. Langmuir isotherm well represented the equilibrium data and through this evaluation, Moringa husks proved to be a potential adsorbent for Diuron removal from water.
View Article and Find Full Text PDFThe present study proposes the synthesis and characterization of graphene oxide (GO) and its application in the adsorption of the antibiotic cephalexin (CFX) in aqueous solution. The characterization of graphene oxide was obtained by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential. The influence of pH on the batch adsorption process was investigated by analysing adsorption equilibrium isotherms and adsorption kinetics.
View Article and Find Full Text PDFThe herbicide removal of Diuron in a fixed-bed column packed with the bark biosorbent was investigated experimentally and through phenomenological mathematical modelling. To understand the physical phenomena involved, the steps of external mass transfer resistance, internal mass transfer resistance and the adsorption phenomenon itself were considered as possible limiting steps in the herbicide mass transfer from the liquid to the solid phase. In the developing process of the internal mass transfer resistance model, two hypotheses were considered: constant mass transfer coefficient and mass transfer coefficient as a function of the herbicide concentration in the biosorbent.
View Article and Find Full Text PDF