Publications by authors named "Gessica Sala"

Activation of the NLRP3 inflammasome in response to either exogenous (PAMPs) or endogenous (DAMPs) stimuli results in the production of IL-18, caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status plays a role in human pathologies, including Alzheimer's disease (AD). Autophagic removal of NLRP3 inflammasome activators can reduce inflammasome activation and inflammation.

View Article and Find Full Text PDF

Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption.

View Article and Find Full Text PDF

Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins.

View Article and Find Full Text PDF

The relevant social and economic costs associated with aging and neurodegenerative diseases, particularly Alzheimer's disease (AD), entail considerable efforts to develop effective preventive and therapeutic strategies. The search for natural compounds, whose intake through diet can help prevent the main biochemical mechanisms responsible for AD onset, led us to screen hops, one of the main ingredients of beer. To explore the chemical variability of hops, we characterized four hop varieties, , Cascade, Saaz, Tettnang, and Summit.

View Article and Find Full Text PDF

The anti-Alzheimer disease (AD) activity reported for an aqueous cinnamon bark extract prompted us to investigate and compare the anti-amyloidogenic properties of cinnamon extracts obtained from both bark and bud, the latter being a very little explored matrix. We prepared the extracts with different procedures (alcoholic, hydroalcoholic, or aqueous extractions). An efficient protocol for the rapid analysis of NMR spectra of cinnamon bud and bark extracts was set up, enabling the automatic identification and quantification of metabolites.

View Article and Find Full Text PDF

Despite transcranial Direct Current Stimulation (DCS) is currently proposed as a symptomatic treatment in Parkinson's disease, the intracellular and molecular mechanisms elicited by this technique are still unknown, and its disease-modifying potential unexplored. Aim of this study was to elucidate the on-line and off-line effects of DCS on the expression, aggregation and degradation of alpha-synuclein (asyn) in a human neuroblastoma cell line under basal conditions and in presence of pharmachologically-induced increased asyn levels. Following DCS, gene and protein expression of asyn and its main autophagic catabolic pathways were assessed by real-time PCR and Western blot, extracellular asyn levels by Dot blot.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) patients express significant clinical heterogeneity that often hinders a correct diagnostic definition. Intracellular deposition of TDP-43, a protein involved in RNA metabolism characterizes the pathology. Interestingly, this protein can be detected in serum, wherein cognate naturally-occurring auto-antibodies (anti-TDP-43 NAb) might be also present, albeit they have never been documented before.

View Article and Find Full Text PDF

The metabolic profile of Lavado cocoa was characterized for the first time by NMR spectroscopy, then compared with the profiles of fermented and processed varieties, Natural and commercial cocoa. The significant difference in the contents of theobromine and flavanols prompted us to examine the cocoa varieties to seek correlations between these metabolite concentrations and the anti-amyloidogenic activity reported for cocoa in the literature. We combined NMR spectroscopy, preparative reversed-phase (RP) chromatography, atomic force microscopy, in vitro biochemical and cell assays, to investigate and compare the anti-amyloidogenic properties of extracts and fractions enriched in different metabolite classes.

View Article and Find Full Text PDF

Heat shock protein 70 family was demonstrated to play a critical role in protein homeostasis, a process profoundly impaired in neurodegenerative disorders. Neurodegenerative diseases are characterized by the accumulation of different kind of proteins and the formation of insoluble aggregates which are toxic for neurons. To explore the role of heat shock protein family 70 (in particular HSPA8 and HSPA1A) in the accumulation of proteins implied in neurodegeneration pathogenesis, in this study we verified in human SH-SY5Y neuroblastoma cells how HSPA8 or HSPA1A knock-down can affect protein levels of tau, superoxide dismutase 1 and α-synuclein.

View Article and Find Full Text PDF

: The demonstration that chaperone-mediated autophagy (CMA) contributes to the degradation of TDP-43, the main constituent of cytoplasmic inclusions typically found in motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS), has pointed out a possible involvement of CMA in aggregate formation. To explore this possibility, in this study, we verified the presence of a possible systemic CMA alteration in sALS patients and its effect on TDP-43 expression. : Gene and protein expression of the cytosolic chaperone HSC70 and the lysosome receptor LAMP2A, the two pivotal mediators of CMA, was assessed in peripheral blood mononuclear cells (PBMCs) derived from 30 sALS patients and 30 healthy controls.

View Article and Find Full Text PDF

Objective: Until recently, riluzole was the only drug licensed for amyotrophic lateral sclerosis (ALS). In spite of its efficacy, the mechanism of action remains elusive, and both blocking of glutamate release and antioxidant properties have been postulated. Here we characterized human SH-SY5Y neuroblastoma cell lines, taking advantage of their insensitivity to excitotoxic insults, in order to selectively assess the presence of a direct antioxidant effect of riluzole.

View Article and Find Full Text PDF

The spreading of misfolded protein species contributes to the propagation of harmful mediators in proteinopathies, including Alzheimer's disease (AD). Cellular stress circumstances, such as abnormal protein accumulation or nutrient deprivation, elicit the secretion of soluble misprocessed proteins and insoluble aggregates via multiple mechanisms of unconventional secretion. One of them consists in the rerouting of autophagic vacuoles towards exocytosis, an unconventional type of autophagy mediated by caspase-3 activation under starvation.

View Article and Find Full Text PDF

To identify food and beverages that provide the regular intake of natural compounds capable of interfering with toxic amyloidogenic aggregates, we developed an experimental protocol that combines NMR spectroscopy and atomic force microscopy, in vitro biochemical and cell assays to detect anti-Aβ molecules in natural edible matrices. We applied this approach to investigate the potential anti-amyloidogenic properties of coffee and its molecular constituents. Our data showed that green and roasted coffee extracts and their main components, 5-O-caffeoylquinic acid and melanoidins, can hinder Aβ on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line.

View Article and Find Full Text PDF

Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) represents a selective form of autophagy involved in the degradation of specific soluble proteins containing a pentapeptide motif that is recognized by a cytosolic chaperone able to deliver proteins to the lysosomes for degradation. Physiologically, CMA contributes to maintain crucial cellular functions including energetic balance and protein quality control. Dysfunctions in CMA have been associated to the pathogenesis of several neurodegenerative diseases characterized by accumulation and aggregation of proteins identified as CMA substrates.

View Article and Find Full Text PDF

HSPA8/hsc70 (70-kDa heat shock cognate) chaperone protein exerts multiple protective roles. Beside its ability to confer to the cells a generic resistance against several metabolic stresses, it is also involved in at least two critical processes whose activity is essential in preventing Parkinson's disease (PD) pathology. Actually, hsc70 protein acts as the main carrier of chaperone-mediated autophagy (CMA), a selective catabolic pathway for alpha-synuclein, the main pathogenic protein that accumulates in degenerating dopaminergic neurons in PD.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neuro-muscular disease characterized by motor neuron loss. MEF2D and MEF2C are members of the myocyte enhancer factor 2 family (MEF2), a group of transcription factors playing crucial roles both in muscle and in neural development and maintenance; for this reason, a possible involvement of MEF2 in ALS context has been investigated. Since the transcriptional activity of each tissue specific MEF2 isoform is conserved in different cell types, we chose to assess our parameters in an easily accessible and widely used experimental tool such as peripheral blood mononuclear cells (PBMCs) obtained from 30 sporadic ALS patients (sALS), 9 ALS patients with mutations in SOD1 gene (SOD1+) and 30 healthy controls.

View Article and Find Full Text PDF

Here we report the case of an ALS patient found to carry both a novel heterozygous change (c.194G>A) within the spastin gene and a homozygous deletion of the SMN2 gene. The patient was started on valproic acid (VPA, 600 mg/die per os) considering the capacity of this drug of increasing survival motor neuron through an epigenetic mechanism.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) impairment is recognized to play a pathogenetic role in Parkinson's disease (PD). A reduced expression of lysosomal-associated membrane protein (lamp) 2A and heat shock cognate (hsc) 70 protein, the two key regulators of CMA, has been reported in brains of PD patients. To verify the existence of a possible systemic CMA dysfunction in PD, in this study the expression of hsc70 and lamp2A was assessed in peripheral blood mononuclear cells (PBMC) of patients with sporadic PD and compared to healthy subjects.

View Article and Find Full Text PDF

ALS is a heterogeneous disease that is not well understood. Epigenetic rearrangements are important in complex disorders including motor neuron diseases. The aim of this study was to determine whether whole-blood DNA methylation (DNA MET %) is a potential modifier of age at onset in ALS.

View Article and Find Full Text PDF

Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation.

View Article and Find Full Text PDF

A potential role for macroautophagy dysfunction in the pathogenesis of amyotrophic lateral sclerosis (ALS) was hypothesized after the demonstration that selected markers are up-regulated in post mortem samples obtained from both patients and animal models of disease. We hypothesized that a putative dysfunction of this catabolic pathway could be operative also in peripheral blood mononuclear cells (PBMC) obtained from ALS patients, since these cells represent an accessible model for studying molecular pathogenesis events in neuropsychiatric disorders. Beclin-1 and LC3II immunoreactivity were assessed in PBMC from 15 ALS patients and 15 controls by Western blot analysis.

View Article and Find Full Text PDF

Despite advances in neuroimaging, the diagnosis of idiopathic Parkinson's disease (PD) remains clinical. The identification of biological markers for an early diagnosis is of great interest to start a neuroprotective therapy aimed at slowing, blocking or reversing the disease progression. Vesicular monoamine transporter 2 (VMAT2) sequesters cytoplasmic dopamine into synaptic vesicles for storage and release.

View Article and Find Full Text PDF

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss resulting from retinal ganglion cell degeneration. Despite the important role of respiratory chain deficiency and oxidative stress induced by mtDNA point mutations affecting complex I, excitotoxic injury has been postulated as a concurrent pathogenic factor. We used transmitochondrial cybrid cell lines constructed using enucleated fibroblasts from three LHON probands carrying the most severe 3460/ND1 mutation and three controls as mitochondria donors, and the osteosarcoma-derived mtDNA-less cells, to study the possible efficacy of two selected antioxidant compounds in preventing glutamate uptake reduction previously observed in LHON cybrids.

View Article and Find Full Text PDF