Publications by authors named "Gessi S"

Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70% of all cases of dementia. It is associated with neuroinflammation and neuronal cell death, which are involved in disease progression. There is a lack of effective therapies, and halting this process represents a therapeutic challenge.

View Article and Find Full Text PDF

This commentary offers a detailed examination of a newly published paper on the effects of small molecule decoys of amyloid-β (Aβ) aggregation on microglial activation. It was discovered that the NSC16224 decoy peptide inhibited proinflammatory cytokines TNFα and IL6 release from microglia in response to Aβ and Aβ treatment. The research addresses the potential of blocking a sequence of events that lead to the progression of Alzheimer's disease (AD).

View Article and Find Full Text PDF

Microalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The blood-brain barrier (BBB) protects the central nervous system (CNS) by controlling what substances pass from the bloodstream to the brain, balancing necessary functions while blocking harmful elements.
  • The presence of adenosine, a naturally occurring nucleoside, regulates various bodily functions via its receptors, which are seen as promising targets for drug development against CNS disorders.
  • Research indicates that adenosine can influence BBB permeability through its receptors, especially when both A1 and A2A receptors are activated simultaneously, showing potential for therapeutic applications in CNS diseases.
View Article and Find Full Text PDF

Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD.

View Article and Find Full Text PDF
Article Synopsis
  • - Voghiera garlic, an Italian white garlic variety recognized with Protected Designation of Origin in 2010, is valued for its culinary uses and health benefits due to its phytochemical content.
  • - This study investigates how different storage conditions (like -4°C and +4°C) affect the phytochemical composition and shelf-life of Voghiera garlic, particularly focusing on important compounds that contribute to its bioactivity.
  • - Results showed a decline in organosulfur compounds after 6 months of storage, leading to reduced bioactivity, while antioxidant compounds remained stable, highlighting the importance of proper refrigeration to maintain garlic quality.
View Article and Find Full Text PDF

There is a huge need for novel therapeutic and preventative approaches to Alzheimer's disease (AD) and neuroinflammation seems to be one of the most fascinating solutions. The primary cell type that performs immunosurveillance and helps clear out unwanted chemicals from the brain is the microglia. Microglia work to reestablish efficiency and stop further degeneration in the early stages of AD but mainly fail in the illness's later phases.

View Article and Find Full Text PDF

Garlic, , has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities.

View Article and Find Full Text PDF

The A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer's disease (AD).

View Article and Find Full Text PDF

The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer’s disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world’s old population (>65 years of age).

View Article and Find Full Text PDF

Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A and A adenosine receptors (ARs), respectively.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common form of dementia worldwide, with approximately 6 million cases reported in America in 2020. The clinical signs of AD include cognitive dysfunction, apathy, anxiety and neuropsychiatric signs, and pathogenetic mechanisms that involve amyloid peptide-β extracellular accumulation and tau hyperphosphorylation. Unfortunately, current drugs to treat AD can provide only symptomatic relief but are not disease-modifying molecules able to revert AD progression.

View Article and Find Full Text PDF

Background: We investigated the phenolic content characterizing different plant extracts from , , and , their antioxidant, antiinflammatory effects, and their mechanism of action.

Methods: plant samples were macerated in 40% ethanol or hot/ cold glycerate and assessed for polyphenols content. The antioxidant activity was investigated by DPPH radical scavenging assay and HDCFDA test in LPS-stimulated RAW264.

View Article and Find Full Text PDF

Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by μ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, μ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common neurodegenerative pathologies. Its incidence is in dramatic growth in Western societies and there is a need of both biomarkers to support the clinical diagnosis and drugs for the treatment of AD. The diagnostic criteria of AD are based on clinical data.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a widespread neurodegenerative pathology responsible for about 70% of all cases of dementia. Adenosine is an endogenous nucleoside that affects neurodegeneration by activating four membrane G protein-coupled receptor subtypes, namely P1 receptors. One of them, the A subtype, is particularly expressed in the brain at the striatal and hippocampal levels and appears as the most promising target to counteract neurological damage and adenosine-dependent neuroinflammation.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70%of all cases of dementia. Adenosine, a ubiquitous nucleoside, plays a key role in neurodegeneration, through interaction with four receptor subtypes. The A2A receptor is upregulated in peripheral blood cells of patients affected by Parkinson's and Huntington's diseases, reflecting the same alteration found in brain tissues.

View Article and Find Full Text PDF

Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells.

View Article and Find Full Text PDF

A small library of 3-thia-7,9-diazabicyclo[3.3.1]nonanes was synthesized and their opioid receptors affinity and selectivity evaluated.

View Article and Find Full Text PDF

Glutamate cytotoxicity is implicated in neuronal death in different neurological disorders including stroke, traumatic brain injury, and neurodegenerative diseases. Adenosine is a nucleoside that plays an important role in modulating neuronal activity and its receptors have been identified as promising therapeutic targets for glutamate cytotoxicity. The purpose of this study is to elucidate the role of adenosine and its receptors on glutamate-induced injury in PC12 cells and to verify the protective effect of the novel A adenosine receptor positive allosteric modulator, TRR469.

View Article and Find Full Text PDF

Adenosine modulates many physiological processes through the interaction with adenosine receptors (ARs) named as A, A, A and AARs. During ischemic stroke, adenosine mediates neuroprotective and anti-inflammatory effects through ARs activation. One of the dominant pathways generating extracellular adenosine involves the dephosphorylation of ATP by ecto-nucleotidases CD39 and CD73, which efficiently hydrolyze extracellular ATP to adenosine.

View Article and Find Full Text PDF