Marburg virus (MARV) is a causative agent of a severe hemorrhagic fever with high fatality rates endemic in central Africa. Current outbreaks of MARV in Equatorial Guinea and Tanzania underline the relevance of MARV as a public health emergency pathogen. In 2021, the first known human MARV case was confirmed in Guinea, West Africa.
View Article and Find Full Text PDFInfections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies.
View Article and Find Full Text PDFHepatitis C virus (HCV) infects liver cells and often causes chronic infection, also leading to liver cirrhosis and cancer. In the cytoplasm, the viral structural and non-structural (NS) proteins are directly translated from the plus strand HCV RNA genome. The viral proteins NS3 to NS5B proteins constitute the replication complex that is required for RNA genome replication via a minus strand antigenome.
View Article and Find Full Text PDFTranslation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5'-untranslated region (5'UTR) and part of the core protein coding sequence, and by the 3'UTR. The 5'UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors.
View Article and Find Full Text PDFHepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the host cell immune response, allowing the virus to continue replication. Therefore, in about 70% of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFMultiple host factors are known to play important roles in hepatitis C virus (HCV) replication, in immune responses induced by HCV infection, or in processes that facilitate virus escape from immune clearance, while yet only few studies examined the contribution of long non-coding RNAs (lncRNAs/lncRs). Using microarrays, we identified lncRNAs with altered expression levels in HCV replicating Huh-7.5 hepatoma cells.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress.
View Article and Find Full Text PDFHepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus in the family and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm.
View Article and Find Full Text PDFCircular RNAs (circRNAs) were recently described as a novel class of cellular RNAs. Two circRNAs were reported to function as molecular sponges, sequestering specific microRNAs, thereby de-repressing target mRNAs. Due to their elevated stability in comparison to linear RNA, circRNAs may be an interesting tool in molecular medicine and biology.
View Article and Find Full Text PDFThe liver-specific microRNA-122 (miR-122) binds to two conserved binding sites in the 5' UTR of hepatitis C virus (HCV) RNA. This binding was reported to enhance HCV RNA replication, translation and stability. We have analysed binding of miR-122/Argonaute 2 (Ago2) complexes to these sites using anti-Ago2 co-immunoprecipitation of radioactively labelled HCV RNAs along with ectopic miR-122 in HeLa cells.
View Article and Find Full Text PDFWe have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3' untranslated region (3'UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites.
View Article and Find Full Text PDFUnlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin.
View Article and Find Full Text PDF