Publications by authors named "Gesa Rickheit"

Loss of the endosomal anion transport protein ClC-5 impairs renal endocytosis and underlies human Dent's disease. ClC-5 is thought to promote endocytosis by facilitating endosomal acidification through the neutralization of proton pump currents. However, ClC-5 is a 2 chloride (Cl-)/proton (H+) exchanger rather than a Cl- channel.

View Article and Find Full Text PDF

Inactivation of the mainly endosomal 2Cl(-)/H(+)-exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent's disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a "PY-motif" in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation.

View Article and Find Full Text PDF

Extracellular ATP controls various signaling systems including propagation of intercellular Ca(2+) signals (ICS). Connexin hemichannels, P2x7 receptors (P2x7Rs), pannexin channels, anion channels, vesicles, and transporters are putative conduits for ATP release, but their involvement in ICS remains controversial. We investigated ICS in cochlear organotypic cultures, in which ATP acts as an IP(3)-generating agonist and evokes Ca(2+) responses that have been linked to noise-induced hearing loss and development of hair cell-afferent synapses.

View Article and Find Full Text PDF

The CLC gene family encodes Cl(-) channels or Cl(-)/H(+) exchangers. While our understanding of their structure-function relationship has greatly benefited from the crystal structure of bacterial homologues, human inherited diseases and knock-out mice were crucial in deciphering their physiological roles. Several vesicular CLC Cl(-)/H(+) exchangers are expressed in the proximal tubule (PT).

View Article and Find Full Text PDF

Human Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a beta-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in mice now reveals that the positive potential, but not the high potassium concentration, of the scala media depends on the presence of these channels in the epithelium of the stria vascularis.

View Article and Find Full Text PDF