In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting a substantial fraction of patients. Many of the currently available antiepileptic drugs target voltage-gated sodium channels, leading to a rate-dependent suppression of neuronal discharge. A loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels.
View Article and Find Full Text PDFNeuronal excitability is critically determined by the properties of voltage-gated Na(+) currents. Fast transient Na(+) currents (I(NaT)) mediate the fast upstroke of action potentials, whereas low-voltage-activated persistent Na(+) currents (I(NaP)) contribute to subthreshold excitation. Na(+) channels are composed of a pore-forming alpha subunit and beta subunits, which modify the biophysical properties of alpha subunits.
View Article and Find Full Text PDF