Publications by authors named "Geryk J"

Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers assessed 88 ALS patients for hexanucleotide repeat expansion in the C9orf72 gene and other known ALS-linked genes using next-generation sequencing.
  • * Results showed 13.5% had pathogenic HRE in C9orf72, and unexpected findings included no pathogenic variants in young-onset sporadic patients, suggesting potential genetic variability that remains unexplored.
View Article and Find Full Text PDF

Cluster analyzes of facial models of autistic patients aim to clarify whether it is possible to diagnose autism on the basis of facial features and further to stratify the autism spectrum disorder. We performed a cluster analysis of sets of 3D scans of ASD patients (116) and controls (157) using Euclidean and geodesic distances in order to recapitulate the published results on the Czech population. In the presented work, we show that the major factor determining the clustering structure and consequently also the correlation of resulting clusters with autism severity degree is body mass index corrected for age (BMIFA).

View Article and Find Full Text PDF

Background: Genetic focal segmental glomerulosclerosis (FSGS) is caused by pathogenic variants in a broad spectrum of genes that have a variable representation based on subjects' ethnicity and/or age. The most frequently mutated autosomal recessive gene in FSGS is . In this study, we analyzed the spectrum of variants and their associated phenotype in Czech adult FSGS patients.

View Article and Find Full Text PDF

Parkinson's disease and parkinsonism are relatively common neurodegenerative disorders. This study aimed to assess potential genetic risk factors of haplotypes in genes associated with parkinsonism in a population in which endemic parkinsonism and atypical parkinsonism have recently been found. The genes and were analyzed in 62 patients (P) and 69 age-matched controls from the researched area (C1).

View Article and Find Full Text PDF

The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters.

View Article and Find Full Text PDF

Background: Structural variants (SVs) represent an important source of genetic variation. One of the most critical problems in their detection is breakpoint uncertainty associated with the inability to determine their exact genomic position. Breakpoint uncertainty is a characteristic issue of structural variants detected via short-read sequencing methods and complicates subsequent population analyses.

View Article and Find Full Text PDF

The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown.

View Article and Find Full Text PDF

Folate deficiency in the critical developmental period has been repeatedly associated with an increased risk of Autism spectrum disorders (ASD), but the key pathophysiological mechanism has not yet been identified. In this work, we focused on identifying genes whose defect has similar consequences to folate depletion in the metabolic network. Within the Flux Balance Analysis (FBA) framework, we developed a method of blocked metabolites that allowed us to define the metabolic consequences of various gene defects and folate depletion.

View Article and Find Full Text PDF

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na/H exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry.

View Article and Find Full Text PDF

Animal body coloration is a complex trait resulting from the interplay of multiple mechanisms. While many studies address the functions of animal coloration, the mechanisms of colour production still remain unknown in most taxa. Here we compare reflectance spectra, cellular, ultra- and nano-structure of colour-producing elements, and pigment types in two freshwater turtles with contrasting courtship behaviour, and .

View Article and Find Full Text PDF

Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry, utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens.

View Article and Find Full Text PDF

Kabuki syndrome is mainly caused by dominant de-novo pathogenic variants in the KMT2D and KDM6A genes. The clinical features of this syndrome are highly variable, making the diagnosis of Kabuki-like phenotypes difficult, even for experienced clinical geneticists. Herein we present molecular genetic findings of causal genetic variation using array comparative genome hybridization and a Mendeliome analysis, utilizing targeted exome analysis focusing on regions harboring rare disease-causing variants in Kabuki-like patients which remained KMT2D/KDM6A-negative.

View Article and Find Full Text PDF

Recently, cerebral folate deficiency (CFD) was suggested to be involved in the pathogenesis of autism spectrum disorders (ASD). However, the exact role of folate metabolism in the pathogenesis of ASD, identification of underlying pathogenic mechanisms and impaired metabolic pathways remain unexplained. The aim of our study was to develop and test a novel, unbiased, bioinformatics approach in order to identify links between ASD and disturbed cerebral metabolism by focusing on abnormal folate metabolism, which could foster patient stratification and novel therapeutic interventions.

View Article and Find Full Text PDF

Tubulocystic renal cell carcinoma (TRCC) represents a rare tumor with incidence lower than 1 % of all renal carcinomas. This study was undertaken to contribute to characterization of molecular signatures associated with TRCC and to compare them with the features of papillary renal cell carcinoma (PRCC) at the level of genome wide methylation analysis.We performed methylated DNA immunoprecipitation (MeDIP) coupled with microarray analysis (Roche NimbleGen).

View Article and Find Full Text PDF

Kabuki syndrome (KS) is a dominantly inherited disorder mainly due to de novo pathogenic variation in KMT2D or KDM6A genes. Initially, a representative cohort of 14 Czech cases with clinical features suggestive of KS was analyzed by experienced clinical geneticists in collaboration with other specialties, and observed disease features were evaluated according to the 'MLL2-Kabuki score' defined by Makrythanasis et al. Subsequently, the aforementioned genes were Sanger sequenced and copy number variation analysis was performed by MLPA, followed by genome-wide array CGH testing.

View Article and Find Full Text PDF

Unlabelled: Transformation of rodent cells with avian Rous sarcoma virus (RSV) opened new ways to studying virus integration and expression in nonpermissive cells. We were interested in (i) the molecular changes accompanying fusion of RSV-transformed mammalian cells with avian cells leading to virus rescue and (ii) enhancement of this process by retroviral gene products. The RSV-transformed hamster RSCh cell line was characterized as producing only a marginal amount of env mRNA, no envelope glycoprotein, and a small amount of unprocessed Gag protein.

View Article and Find Full Text PDF

We examine the modular structure of the metabolic network when combined with the regulatory network representing direct regulation of enzymes by small metabolites in E. coli. We introduce novel clustering algorithm and compare it with mainstream module detection method based on simulated annealing.

View Article and Find Full Text PDF

Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species.

View Article and Find Full Text PDF

Background: Rhesus-positive and rhesus-negative persons differ in the presence-absence of highly immunogenic RhD protein on the erythrocyte membrane. This protein is a component of NH(3) or CO(2) pump whose physiological role is unknown. Several recent studies have shown that RhD positivity protects against effects of latent toxoplasmosis on motor performance and personality.

View Article and Find Full Text PDF

The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups.

View Article and Find Full Text PDF
Article Synopsis
  • The avian sarcoma and leukosis virus (ASLV) family comprises five subgroups (A to E) that evolved from a common ancestor in chickens, with specific chicken genetic loci influencing susceptibility to these viruses.
  • An inbred chicken line, line M, displays altered susceptibility to ASLV(B), (D), and (E) due to a mutation in the tvb gene, resulting in a receptor protein (Tvb(r2)) that has a critical amino acid change at position 125 (C125S).
  • This C125S mutation significantly lowers the ability of the Tvb(S1) receptor to bind ASLV envelope proteins, leading to reduced susceptibility to these viral subgroups and inhibiting the development of cancer
View Article and Find Full Text PDF

An efficient induction of wasting disease in chickens by avian leukosis virus (ALV), particularly ALV subgroup C, requires >102 infectious units virus inoculated in mid embryogenesis. The most conspicuous symptoms of the disease were induced by ALV subgroup C; however, significant differences in the occurrence of wasting disease were found among individual members of this subgroup. Almost comparable pathogenicity was exhibited by ALV subgroup D, whereas viruses of subgroups B and A proved to be moderately and almost non-pathogenic, respectively.

View Article and Find Full Text PDF

The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned.

View Article and Find Full Text PDF

Avian sarcoma and leucosis viruses (ASLV) are classified into six major subgroups (A to E and J) according to the properties of the viral envelope proteins and the usage of cellular receptors for virus entry. Subgroup A and B receptors are identified molecularly and their genomic positions TVA and TVB are mapped. The subgroup C receptor is unknown, its genomic locus TVC is reported to be genetically linked to TVA, which resides on chicken chromosome 28.

View Article and Find Full Text PDF