Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks-qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers.
View Article and Find Full Text PDFElectrons on helium form a unique two-dimensional system on the interface of liquid helium and vacuum. A small number of trapped electrons on helium exhibits strong interactions in the absence of disorder, and can be used as a qubit. Trapped electrons typically have orbital frequencies in the microwave regime and can therefore be integrated with circuit quantum electrodynamics (cQED), which studies light-matter interactions using microwave photons.
View Article and Find Full Text PDF