This is the first report on a unique hybrid molecule made of estradiol and testosterone (TS). This distinctive hybrid molecule (1) was designed to interact with both the estrogen receptor (ER) and the androgen receptor (AR) found in hormone-dependent female and male cancer cells, and was synthesized using ethynylestradiol (17EE) as the estrogenic component and 7α-(4-azido-but-2-enyl)-4-androsten-17β-ol-3-one as the androgenic counterpart in a seven-step reaction with ∼ 26 % overall yield. We reasoned that the dual receptor binding ability could allow 1 to act as an antihormone.
View Article and Find Full Text PDFThe synthesis of a 17α-linked C2-symmetric testosterone dimer and its dihydrotestosterone analog is reported. The dimers were synthesized using a short five-step reaction sequence with 28% and 38% overall yield for the testosterone and dihydrotestosterone dimer, respectively. The dimerization reaction was achieved by an olefin metathesis reaction with 2nd generation Hoveyda-Grubbs catalyst.
View Article and Find Full Text PDFThe conjugation of chitosan 15 and 100 KD with anticancer drugs cis- and trans-Pt (NH)Cl (abbreviated cis-Pt and trans-Pt) were studied at pH 5-6. Using multiple spectroscopic methods and thermodynamic analysis to characterize the nature of drug-chitosan interactions and the potential application of chitosan nanoparticles in drug delivery. Analysis showed that both hydrophobic and hydrophilic contacts are involved in drug-polymer interactions, while chitosan size and charge play a major role in the stability of drug-polymer complexes.
View Article and Find Full Text PDFAmaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer’s disease (anti-cholinesterase and -prolyl oligopeptidase) properties.
View Article and Find Full Text PDFThe synthesis of two isomeric testosterone dimers and an androstenedione dimer is reported. The design takes advantage of an efficient transformation of testosterone leading to the synthesis of the key diene, 7α-(buta-1,3-dienyl)-4-androsten-17β-ol-3-one, through an elimination reaction. It was found that in some instances the same reaction led to partial epimerization of the 17β-hydroxyl group into the 17α-hydroxyl group.
View Article and Find Full Text PDFThe design of -symmetric biologically active molecules is a subject of interest to the scientific community. It provides the possibility of discovering medicine with higher biological potential than the parent drugs. Such molecules are generally produced by classic chemistry, considering the shortness of reaction sequence and the efficacy for each step.
View Article and Find Full Text PDFThe binding of tRNA to aminobenzoic acid derivatives DAB-0 (-[4-(2,5-dioxo-pyrrolidin-1-yl)-benzoyl]-hydrazine carboxylic acid -butyl ester) and DAB-1 (-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-benzoyl]-hydrazine carboxylic acid -butyl ester) was investigated in aqueous solution at physiological pH. Thermodynamic parameters Δ -4.8 to -4.
View Article and Find Full Text PDFMuscle-invasive bladder cancer (MIBC) is an aggressive form of urothelial bladder carcinoma (UBC) with poorer outcomes compared to the non-muscle invasive form (NMIBC). Higher recurrent rates and rapid progression after relapse in UBC is known to be linked with chronic inflammation. Here, the preclinical murine models of NMIBC (MB49) and MIBC (MB49-I) were used to assess the antitumor effects of DAB-1, an anti-inflammatory aminobenzoic acid derivative we have developed in order to target cancer-related inflammation.
View Article and Find Full Text PDFProstate cancer is the most diagnosed type of cancer in men in Canada. One out of eight men will be stricken with this disease during the course of his life. It is noteworthy that, at initial diagnoses 80-90% of cancers are androgen dependent.
View Article and Find Full Text PDFExpert Opin Drug Discov
April 2019
Background: Amaryllidaceae alkaloids (AAs) are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties. Previous investigations on AA biosynthesis have revealed that all AAs share a common precursor, norbelladine, presumably synthesized by an enzyme catalyzing a Mannich reaction involving the condensation of tyramine and 3,4-dihydroxybenzaldehyde. Similar reactions have been reported.
View Article and Find Full Text PDFA series of 7α-linked testosterone dimers were made and tested for biological activity on both androgen-dependent (LNCaP) and androgen-independent (DU-145 and PC3) prostate cancer cell lines. The synthesis proceeds through the formation of a trans-4-(17β-acetoxy-4-androsten-3-one-7α-yl)-but-2-enoic acid 4-hydroxy-alkyl ester intermediate of various length (7a-d) followed by the final dimerization step. The dimers showed interesting biological activity in comparison to the ω-hydroxyalkyl ester intermediates 7a-d.
View Article and Find Full Text PDFCytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2.
View Article and Find Full Text PDFIntroduction: The hybridization of biologically active molecules is a powerful tool for drug discovery used to target a variety of diseases. It offers the prospect of better drugs for the treatment of a number of illnesses including cancer, malaria, tuberculosis and AIDS. Hybrid drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments.
View Article and Find Full Text PDFThe search for new specific chemotherapeutic drugs designed to minimize the toxic side effects resulting from chemotherapy is still a subject of intense research. The objective of the current study was to design a non-steroidal-platinum(II) derivative that would target the estrogen receptor alpha (ERα) without triggering estrogenic cell proliferation. For this purpose, the amino acid L-tyrosine was modified and attached to a cisplatin analog.
View Article and Find Full Text PDFInflammation plays a crucial role in many types of cancer and is known to be involved in their initiation and promotion. As such, it is presently recognized as an important risk factor for several types of cancers such as bladder, prostate and breast cancers. The discovery of novel anti-inflammatory compounds can have a huge implication not only for the treatment of cancer but also as preventive and protective treatment modalities.
View Article and Find Full Text PDFProstate cancer (PC) is a major health issue in the world. Treatments of localized PC are quite efficient and usually involve surgery, radiotherapy and/or hormonal therapy. Metastatic PC is however rarely curable to this day.
View Article and Find Full Text PDFThe intercalation of antitumor drug doxorubicin (DOX) and its analogue N-(trifluoroacetyl) doxorubicin (FDOX) with DNA duplex was investigated, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Both DOX and FDOX were intercalated into DNA duplex with the free binding energy of -4.99 kcal for DOX-DNA and -4.
View Article and Find Full Text PDFProstate cancer is a major public health problem worldwide and, more specifically, new treatments for hormone-refractory cancers are highly sought by several research groups. Although platinum(II)-based chemotherapy and other strategies grow in interest to treat castration-resistant prostate cancer (CRPC), they still exhibit modest activity on CRPC and overall patient survival. In this study, we designed and prepared new combi-molecules using 17β-acetyl-testosterone and amino acid platinum(II) complexes linked at the position 7α to target and to improve the antiproliferative activity of platinum(II)-based chemotherapy on prostate cancer cells.
View Article and Find Full Text PDFThe binding sites of antitumor drug doxorubicin (DOX) and its analogue N-(trifluoroacetyl) doxorubicin (FDOX) with tRNA were located, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Different binding sites are involved in drug-tRNA adducts with DOX located in the vicinity of A-29, A-31, A-38, C-25, C-27, C-28, G-30 and U-41, while FDOX bindings involved A-23, A-44, C-25, C-27, G-24, G-42, G-53, G-45 and U-41 with similar free binding energy (-4.44 for DOX and -4.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2013
The synthesis of 7α-testosterone-chlorambucil hybrid is reported. This compound is made from testosterone in a 6 step reaction sequence and with 23% overall yield. An alternative convergent reaction sequence yielded the same hybrid through a Grubbs metathesis reaction between chlorambucil allyl ester and 7α-allyltestosterone with 35% overall yield.
View Article and Find Full Text PDFIntroduction: Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome most of the pharmacokinetic drawbacks encountered when using conventional anticancer drugs. In fact, the future of hybrid anticancer drugs is very bright for the discovery of highly potent and selective molecules that triggers two or more cytocidal pharmacological mechanisms of action acting in synergy to inhibit cancer tumor growth.
Areas Covered: This review represents the most advanced and recent data in the field of hybrid anticancer agents covering mainly the past 5 years of research.
J Photochem Photobiol B
December 2012
β-Lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as doxorubicin and its derivatives. We located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with β-lactoglobulin in aqueous solution at physiological conditions, using FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling. Structural analysis showed that DOX and FDOX bind β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-)(β)(-LG)=1.
View Article and Find Full Text PDFWe located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with bovine serum albumin (BSA) and human serum albumins (HSA) at physiological conditions, using constant protein concentration and various drug contents. FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding sites, the binding constant and the effect of drug complexation on BSA and HSA stability and conformations. Structural analysis showed that doxorubicin and N-(trifluoroacetyl) doxorubicin bind strongly to BSA and HSA via hydrophilic and hydrophobic contacts with overall binding constants of K(DOX-BSA) = 7.
View Article and Find Full Text PDF