This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.
View Article and Find Full Text PDFACS Sens
October 2024
The escalating crisis of nanoplastic pollution in water and food products demands the development of novel methodologies for detection and recycling. Despite various techniques available, surface-enhanced Raman scattering (SERS) is emerging as a highly efficient technique for the trace detection of micro/nanoplastics. However, the development of highly reproducible and stable, flexible SERS substrates that can be used for sensitive detection in environmental medium remains a challenge.
View Article and Find Full Text PDFNanoplastics pollution has led to a severe environmental crisis because of a large accumulation of these smaller nanoplastic particles in the aquatic environment and atmospheric conditions. Detection of these nanoplastics is crucial for food safety monitoring and human health. In this work, we report a simple and eco-friendly method to prepare a SERS-substrate-based nanoporous Ag nanoparticle (NP) film through vacuum thermal evaporation onto a vacuum-compatible deep eutectic solvent (DES) coated growth substrate for quantitative detection of nanoplastics in environmental samples.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is a technique that relies on detecting forces at the nanonewton scale. It involves using a cantilever with a tiny tip at one end. This tip interacts with the short- and long-range forces of material surfaces.
View Article and Find Full Text PDFAnal Chem
April 2024
Nanoplastic particles are emerging as an important class of environmental pollutants in the atmosphere that have adverse effects on our ecosystems and human health. While many methods have been developed to quantitatively detect nanoplastics; however, sensitive detection at low concentrations in a complex environment remains elusive. Herein, we demonstrate a greener method to fabricate a surface-enhanced Raman spectroscopy (SERS) substrate consisting of self-assembled plasmonic Ag-Au bimetallic nanoparticle (NP) films for quantitative SERS detection of nanoplastics in complex media.
View Article and Find Full Text PDFHerein, we report the high apparent piezoelectric coefficient for chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films. The structure of chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films, exploiting characteristics such as dielectric, polarization, apparent piezoelectric properties, and their dependencies on the composition, were investigated. Based on the results of XRD, SEM, FTIR, PFM, and dielectric spectroscopy measurements, the structure of CS-PHB blend films has been proposed, which consists of spheric-like inclusion formed by precipitating isotactic-PHB interface layer, which consists of syndiotactic-PHB hydrogen bonding with CS, and CS matrix.
View Article and Find Full Text PDFIn this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model that gives a qualitative relationship between a set of contact resonance frequencies and the indentation modulus. It is based on white-noise excitation of the tip-sample interaction and uses system theory for the extraction of the resonance modes.
View Article and Find Full Text PDFThis work demonstrates that the rf-sputtering technique, combined with appropriate heat treatments, is potentially effective to develop new materials and devices based on oxide-interface and strain engineering. We report a study of the structural-physical properties relationship of high crystalline quality, highly oriented and epitaxial thin films of the lead-free (KNa)LaNbO (KNNLa) compound which were successfully deposited on Nb-doped SrTiO substrates, with orientations [100] (NSTO100) and [110] (NSTO110). The crystalline growth and the local ferroelectric and piezoelectric properties were evaluated by piezoresponse force microscopy combined with transmission electron microscopy and texture analysis by X-ray diffraction.
View Article and Find Full Text PDFA new resonance-tracking (RT) method using fast frequency sweeping excitation was developed for quantitative scanning probe microscopy (SPM) imaging. This method allows quantitative imaging of elastic properties and ferroelectrical domains with nanoscale resolution at high data acquisition rates. It consists of a commercial AFM system combined with a high-frequency lock-in amplifier, a programmed function generator and a fast data acquisition card.
View Article and Find Full Text PDF