Epicatechin (EC)-based derivatives have garnered significant attention for their powerful antioxidant, anti-inflammatory, anticancer, and antibacterial properties, all of which are attributed to the phenolic hydroxyl groups in their structure. These compounds are promising in regenerative medicine, particularly as bioactive components in scaffolds. This review provides an in-depth analysis of the mechanisms by which EC-based materials enhance tissue repair, examining their application in various scaffold forms, such as hydrogels, nanoparticles, and nanofibers.
View Article and Find Full Text PDFHeart rate variability (HRV) is a noninvasive approach to studying the autonomic modulation of heart rate in experimental settings, such as active standing sympathetic stimulation. It is known that patients with end-stage renal disease during active standing have few changes in HRV dynamics, which are improved after hemodialysis. However, it is unknown whether the response to active standing is recovered after definitive treatment with kidney transplantation.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2024
Because of the physiological and cardiac changes associated with cardiovascular disease, tissue engineering can potentially restore the biological functions of cardiac tissue through the fabrication of scaffolds. In the present study, hybrid nanofiber scaffolds of poly (vinyl alcohol) (PVA) and bioglass type 58S (58SiO-33CaO-9PO, Bg) were fabricated, and their effect on the spontaneous activity of chick embryonic cardiomyocytes in vitro was determined. PVA/Bg nanofibers were produced by electrospinning and stabilized by chemical crosslinking with glutaraldehyde.
View Article and Find Full Text PDFAging is commonly regarded as a physiological process in which the dynamic complexity of physiological time series and organ systems is gradually lost. This notion is derived from the identification of a decline of nonlinear measures with the advance of aging. However, additional research on cardiovascular control studied through heart rate variability (HRV), i.
View Article and Find Full Text PDFSeveral heart rate variability (HRV) characteristics of patients with myocardial ischemia are associated with a higher mortality risk. However, the immediate effect of acute ischemia on the HRV nonlinear dynamical behavior is unknown. The objective of this work is to explore the presence of nonlinearity through surrogate data testing and describe the dynamical behavior of HRV in acutely induced ischemia by percutaneous transluminal coronary angioplasty (PTCA) with linear and recurrence quantification analysis (RQA).
View Article and Find Full Text PDFImpaired baroreflex sensitivity (BRS) is partially responsible for erratic blood pressure fluctuations in End-Stage Renal Disease (ESRD) patients on chronic hemodialysis (HD), which is related to autonomic nervous dysfunction. The sequence method with delayed signals allows for the measurement of BRS in a non-invasive fashion and the investigation of alterations in this physiological feedback system that maintains BP within healthy limits. Our objective was to evaluate the modified delayed signals in the sequence method for BRS assessment in ESRD patients without pharmacological antihypertensive treatment and compare them with those of healthy subjects.
View Article and Find Full Text PDFExploring the presence of nonlinearity through surrogate data testing provides insights into the nature of physical and biological systems like those obtained from heart rate variability (HRV). Short-term HRV time series are of great clinical interest to study autonomic impairments manifested in chronic diseases such as the end stage renal disease (ESRD) and the response of patients to treatment with hemodialysis (HD). In contrast to Iterative Amplitude Adjusted Fourier Transform (IAAFT), the Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) surrogates preserve nonstationary behavior in time series, a common characteristic of HRV.
View Article and Find Full Text PDFLinear heart rate variability (HRV) indices are dependent on the mean heart rate, which has been demonstrated in different models (from sinoatrial cells to humans). The association between nonlinear HRV indices, including those provided by recurrence plot quantitative analysis (RQA), and the mean heart rate (or the mean cardiac period, also called meanNN) has been scarcely studied. For this purpose, we analyzed RQA indices of five minute-long HRV time series obtained in the supine position and during active standing from 30 healthy subjects and 29 end-stage renal disease (ESRD) patients (before and after hemodialysis).
View Article and Find Full Text PDFFor several years, cell culture techniques have been physiologically relevant to understand living organisms both structurally and functionally, aiming at preserving as carefully as possible the in vivo integrity and function of the cells. However, when studying cardiac cells, glass or plastic Petri dishes and culture-coated plates lack important cues that do not allow to maintain the desired phenotype, especially for primary cell culture. In this work, we show that microscaffolds made with polydimethylsiloxane (PDMS) enable modulating the stiffness of the surface of the culture substrate and this originates different patterns of adhesion, self-organization, and synchronized or propagated activity in the culture of chick embryonic cardiomyocytes.
View Article and Find Full Text PDFThe inter beat interval (IBI) duration and systolic blood pressure (SBP) are cardiovascular variables related through several feedback mechanisms. We propose the analysis of diagonal lines in cross recurrence plots (CRPs) from IBI and SBP embedded within the same phase space to identify events where trajectories of both variables concur. The aim of the study was to describe the relationship between IBI and SBP of healthy subjects using CRP and diagonal analysis during baseline condition-supine position (SP)-and how the relationship changes during the physiological stress of active standing (AS).
View Article and Find Full Text PDF