Publications by authors named "Gertjan Kramer"

The presence of antibiotic persisters is one of the leading causes of recurrent and chronic diseases. One challenge in mechanistic research on persisters is the enrichment of pure persisters. In this work, we validated a proposed method to isolate persisters with notorious cultures.

View Article and Find Full Text PDF

Vascular wilt disease, caused by the soil-borne fungus (), poses a threat to many crop species. Four different tomato resistance () genes (, , , and ) have been identified to confer protection against f.sp.

View Article and Find Full Text PDF

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.

View Article and Find Full Text PDF

Purpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.

Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome.

View Article and Find Full Text PDF

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles.

View Article and Find Full Text PDF

(whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors.

View Article and Find Full Text PDF

The phloem-feeding insect is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which was salivating.

View Article and Find Full Text PDF

Bacteria possess the ability to enter a growth-arrested state known as persistence in order to survive antibiotic exposure. Clinically, persisters are regarded as the main causative agents for chronic and recurrent infectious diseases. To combat this antibiotic-tolerant population, a better understanding of the molecular physiology of persisters is required.

View Article and Find Full Text PDF

Background: Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle.

View Article and Find Full Text PDF

The pathogenic yeast Pichia kudriavzevii, previously known as Candida krusei, is more distantly related to Candida albicans than clinically relevant CTG-clade Candida species. Its cell wall, a dynamic organelle that is the first point of interaction between pathogen and host, is relatively understudied, and its wall proteome remains unidentified to date. Here, we present an integrated study of the cell wall in P.

View Article and Find Full Text PDF

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some species carrying a transposon with an operon termed . These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components.

View Article and Find Full Text PDF

is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved.

View Article and Find Full Text PDF

Fluorescent fusion proteins were expressed in to visualize the germinosome by introducing a plasmid that carries fluorescent fusion proteins of germinant receptor GerR subunits or germinosome scaffold protein GerD. The effects of plasmid insertion and recombinant protein expression on the spore proteome were investigated. Proteomic analysis showed that overexpression of the target proteins had negligible effects on the spore proteome.

View Article and Find Full Text PDF

Glycogen in the female lower reproductive tract is a major carbon source for colonization and acidification by common vaginal species, such as . Previously, we identified the amylopullulanase encoding gene of to correlate with the ability to autonomously utilize glycogen for growth. Here, we further characterize genetic variation and differential regulation of affecting the presence of its gene product on the outer surface layer.

View Article and Find Full Text PDF

Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane.

View Article and Find Full Text PDF

Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity.

View Article and Find Full Text PDF

vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis.

View Article and Find Full Text PDF

Chemical cross-linking (CX) of proteins in vivo or in cell free extracts followed by mass spectrometric (MS) identification of linked peptide pairs (CXMS) can reveal protein-protein interactions (PPIs) both at a proteome wide scale and the level of cross-linked amino acid residues. However, error estimation at the level of PPI remains challenging in large scale datasets. Here we discuss recent advances in the recognition of spurious inter-protein peptide pairs and in diminishing the FDR for these PPI-signaling cross-links, such as the use of chromatographic retention time prediction, in order to come to a more reliable reporting of PPIs.

View Article and Find Full Text PDF

Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment.

View Article and Find Full Text PDF

Ice-nucleation active (INA) bacteria can promote the growth of ice more effectively than any other known material. Using specialized ice-nucleating proteins (INPs), they obtain nutrients from plants by inducing frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds, which may affect global precipitation patterns. Despite their evident environmental importance, the molecular mechanisms behind INP-induced freezing have remained largely elusive.

View Article and Find Full Text PDF

The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally.

View Article and Find Full Text PDF

In vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at proteome-wide scale and at peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 to identify cross-links induced in exponentially growing Bacillus subtilis cells treated in culture with bis(succinimidyl)-3-azidomethyl-glutarate (BAMG).

View Article and Find Full Text PDF

Spore-forming bacteria of the orders and play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore's inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods.

View Article and Find Full Text PDF

spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study.

View Article and Find Full Text PDF

To facilitate more accurate spore proteomic analysis, the current study focuses on inducing homogeneous sporulation by overexpressing and assesses the effect of synchronized sporulation initiation on spore resistance, structures, the germination behavior at single-spore level and the proteome. The results indicate that, in our set up, the sporulation by overexpressing can generate a spore yield of 70% within 8 h. The procedure increases spore wet heat resistance and thickness of the spore coat and cortex layers, whilst delaying the time to spore phase-darkening and burst after addition of germinant.

View Article and Find Full Text PDF