Publications by authors named "GertJan B van Ommen"

Most patients with pancreatic cancer present with advanced disease and die within the first year after diagnosis. Predictive biomarkers that signal the presence of pancreatic cancer in an early stage are desperately needed. We aimed to identify new and validate previously found plasma metabolomic biomarkers associated with early stages of pancreatic cancer.

View Article and Find Full Text PDF

Public-private partnerships (PPP) are an efficient means to advance scientific discoveries and boost the medical innovations needed to improve precision medicine. The increasing number and novel nature of such collaborations is keeping the biomedical field in constant flux. Here we provide an update on PPP development involving academic biobanks in the BBMRI community (the European Biobanking and BioMolecular Resources Research Infrastructure) and report the views on PPP of 20 key players from this field.

View Article and Find Full Text PDF

The known challenge of underutilization of data and biological material from biorepositories as potential resources for medical research has been the focus of discussion for over a decade. Recently developed guidelines for improved data availability and reusability-entitled FAIR Principles (Findability, Accessibility, Interoperability, and Reusability)-are likely to address only parts of the problem. In this article, we argue that biological material and data should be viewed as a unified resource.

View Article and Find Full Text PDF

Huntington disease is associated with elongation of a CAG repeat in the HTT gene that results in a mutant huntingtin protein. Several studies have implicated N-terminal huntingtin protein fragments in Huntington disease pathogenesis. Ideally, these fragments are studied in human brain tissue.

View Article and Find Full Text PDF

There is widespread transcriptional dysregulation in Huntington's disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets.

View Article and Find Full Text PDF

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.

View Article and Find Full Text PDF

High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome).

View Article and Find Full Text PDF

Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers.

View Article and Find Full Text PDF

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in the NOTCH3 gene. NOTCH3 mutations in CADASIL result in an uneven number of cysteine residues in one of the 34 epidermal growth factor like-repeat (EGFr) domains of the NOTCH3 protein. The consequence of an unpaired cysteine residue in an EGFr domain is an increased multimerization tendency of mutant NOTCH3, leading to toxic accumulation of the protein in the (cerebro)vasculature, and ultimately reduced cerebral blood flow, recurrent stroke and vascular dementia.

View Article and Find Full Text PDF

Background: Immuno-compromised mice infected with Helicobacter typhlonius are used to model microbially inducted inflammatory bowel disease (IBD). The specific mechanism through which H. typhlonius induces and promotes IBD is not fully understood.

View Article and Find Full Text PDF

Background: The level of expression of the interleukin 7 receptor (IL7R) gene in blood has recently been found to be associated with familial longevity and healthy ageing. IL7R is crucial for T cell development and important for immune competence. To further investigate the IL7R pathway in ageing, we identified the closest interacting genes to construct an IL7R gene network that consisted of IL7R and six interacting genes: IL2RG, IL7, TSLP, CRLF2, JAK1 and JAK3.

View Article and Find Full Text PDF

Gastrointestinal tumor growth is thought to be promoted by gastrointestinal bacteria and their inflammatory products. We observed that intestine-specific conditional Apc mutant mice (FabplCre;Apc (15lox/+)) developed many more colorectal tumors under conventional than under pathogen-low housing conditions. Shotgun metagenomic sequencing plus quantitative PCR analysis of feces DNA revealed the presence of two bacterial species in conventional mice, absent from pathogen-low mice.

View Article and Find Full Text PDF

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.

View Article and Find Full Text PDF

Current molecular genomic approaches to human genetic disorders have led to an explosion in the identification of the genes and their encoded proteins responsible for these disorders. The identification of the gene altered by mutations in Duchenne and Becker muscular dystrophy was one of the earliest examples of this paradigm. The nearly 30 years of research partly outlined here exemplifies the road that similar current gene discovery protocols will be expected to travel, albeit much more rapidly owing to improved diagnosis of genetic disorders and an understanding of the spectrum of mutations thought to cause them.

View Article and Find Full Text PDF

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events.

View Article and Find Full Text PDF

Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels.

View Article and Find Full Text PDF

With several therapeutic approaches in development for Huntington's disease, there is a need for easily accessible biomarkers to monitor disease progression and therapy response. We performed next-generation sequencing-based transcriptome analysis of total RNA from peripheral blood of 91 mutation carriers (27 presymptomatic and, 64 symptomatic) and 33 controls. Transcriptome analysis by DeepSAGE identified 167 genes significantly associated with clinical total motor score in Huntington's disease patients.

View Article and Find Full Text PDF

Biological resources (cells, tissues, bodily fluids or biomolecules) are considered essential raw material for the advancement of health-related biotechnology, for research and development in life sciences, and for ultimately improving human health. Stored in local biobanks, access to the human biological samples and related medical data for transnational research is often limited, in particular for the international life science industry. The recently established pan-European Biobanking and BioMolecular resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to improve accessibility and interoperability between academic and industrial parties to benefit personalized medicine, disease prevention to promote development of new diagnostics, devices and medicines.

View Article and Find Full Text PDF

Huntington disease is caused by expansion of a CAG repeat in the huntingtin gene that is translated into an elongated polyglutamine stretch within the N-terminal domain of the huntingtin protein. The mutation is thought to introduce a gain-of-toxic function in the mutant huntingtin protein, and blocking this toxicity by antibody binding could alleviate Huntington disease pathology. Llama single domain antibodies (VHH) directed against mutant huntingtin are interesting candidates as therapeutic agents or research tools in Huntington disease because of their small size, high thermostability, low cost of production, possibility of intracellular expression, and potency of blood-brain barrier passage.

View Article and Find Full Text PDF

The aim of our study is to investigate whether single-nucleotide dystrophin gene (DMD) variants associate with variability in cognitive functions in healthy populations. The study included 1240 participants from the Erasmus Rucphen family (ERF) study and 1464 individuals from the Rotterdam Study (RS). The participants whose exomes were sequenced and who were assessed for various cognitive traits were included in the analysis.

View Article and Find Full Text PDF

Aims/hypothesis: Not all obese individuals develop type 2 diabetes. Why some obese individuals retain normal glucose tolerance (NGT) is not well understood. We hypothesise that the biochemical mechanisms that underlie the function of adipose tissue can help explain the difference between obese individuals with NGT and those with type 2 diabetes.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive autosomal dominant disorder, caused by a CAG repeat expansion in the HTT gene, which results in expansion of a polyglutamine stretch at the N-terminal end of the huntingtin protein. Several studies have implicated the importance of proteolytic cleavage of mutant huntingtin in HD pathogenesis and it is generally accepted that N-terminal huntingtin fragments are more toxic than full-length protein. Important cleavage sites are encoded by exon 12 of HTT.

View Article and Find Full Text PDF

RNA sequencing is an increasingly popular technology for genome-wide analysis of transcript sequence and abundance. However, understanding of the sources of technical and interlaboratory variation is still limited. To address this, the GEUVADIS consortium sequenced mRNAs and small RNAs of lymphoblastoid cell lines of 465 individuals in seven sequencing centers, with a large number of replicates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoqbeg2csbicq06gharesjno6344q3ccg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once