Publications by authors named "Gert-Jan Kremers"

Many cardiovascular events are triggered by fibrous cap rupture of an atherosclerotic plaque in arteries. However, cap rupture, including the impact of the cap's structural components, is poorly understood. To obtain better mechanistic insights in a biologically and mechanically controlled environment, we previously developed a tissue-engineered fibrous cap model.

View Article and Find Full Text PDF

Transcription-blocking lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which prevents DNA damage-induced cellular toxicity and maintains proper transcriptional processes. TC-NER is initiated by the stalling of RNA polymerase II (RNAPII), which triggers the assembly of TC-NER-specific proteins, namely CSB, CSA and UVSSA, which collectively control and drive TC-NER progression. Previous research has revealed molecular functions for these proteins, however, exact mechanisms governing the initiation and regulation of TC-NER, particularly at low UV doses have remained elusive, partly due to technical constraints.

View Article and Find Full Text PDF

Atherosclerotic plaque rupture in carotid arteries is a major cause of cerebrovascular events. Plaque rupture is the mechanical failure of the heterogeneous fibrous plaque tissue. Local characterization of the tissue's failure properties and the collagen architecture are of great importance to have insights in plaque rupture for clinical event prevention.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies biallelic loss-of-function variants in the SMPD4 gene as the cause of a severe neurodevelopmental disorder that leads to progressive microcephaly and early death, characterized by significant long-term complications like insulin-dependent diabetes.
  • SMPD4 encodes a sphingomyelinase that plays a crucial role in maintaining lipid balance in cell membranes, particularly at the nuclear envelope, affecting cell proliferation and division.
  • Research indicates that the lack of SMPD4 disrupts normal cell functions, leading to defective processes during cell division and impaired development of the brain and pancreatic beta cells, suggesting a direct link between SMPD4 deficiency and the observed clinical symptoms.
View Article and Find Full Text PDF

The rupture of atherosclerotic plaques in coronary and carotid arteries is the primary cause of fatal cardiovascular events. However, the rupture mechanics of the heterogeneous, highly collagenous plaque tissue, and how this is related to the tissue's fibrous structure, are not known yet. Existing pipelines to study plaque mechanics are limited to obtaining only gross mechanical characteristics of the plaque tissue, based on the assumption of structural homogeneity of the tissue.

View Article and Find Full Text PDF

Focal adhesions (FAs) are the main cellular structures to link the intracellular cytoskeleton to the extracellular matrix. FAs mediate cell adhesion, are important for cell migration and are involved in many (patho)-physiological processes. Here we examined FAs and their associated actin fibres using correlative fluorescence and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood.

View Article and Find Full Text PDF

Microglia are the resident macrophages of the central nervous system and contribute to maintaining brain's homeostasis. Current 2D "petri-dish" cell culturing platforms employed for microglia, are unrepresentative of the softness or topography of native brain tissue. This often contributes to changes in microglial morphology, exhibiting an amoeboid phenotype that considerably differs from the homeostatic ramified phenotype in healthy brain tissue.

View Article and Find Full Text PDF

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively.

View Article and Find Full Text PDF

Primary cilia are ubiquitous antenna-like organelles that mediate cellular signaling and represent hotspots for human diseases termed ciliopathies. Within cilia, subcompartments are established to support signal transduction pathways, including Hedgehog signaling. How these compartments are formed and maintained remains largely unknown.

View Article and Find Full Text PDF

CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death.

View Article and Find Full Text PDF

Background: Cell invasion through extracellular matrix (ECM) is a critical step in tumor metastasis. To study cell invasion in vitro, the internal microenvironment can be simulated via the application of 3D models.

Results: This study presents a method for 3D invasion examination using microcarrier-based spheroids.

View Article and Find Full Text PDF

The mortality and morbidity of patients with congenital diaphragmatic hernia (CDH) is primarily caused by treatment-resistant, persistent pulmonary hypertension. Structural vascular changes, exemplified by extensive muscularization, are already present early in gestation, but the origin of these abnormalities is unknown. Understanding the origin of the vascular defects is important to improve treatment modalities.

View Article and Find Full Text PDF
Article Synopsis
  • RTTN mutations are linked to various brain malformations, including polymicrogyria and primary microcephaly, but the exact role of the rotatin protein in brain development is not fully understood.
  • Through clinical studies and cell biological analyses, researchers identified a core phenotype characterized by intellectual disability, short stature, and distinct brain malformations, emphasizing that protein function, rather than just mRNA levels, impacts severity.
  • Findings revealed that rotatin is essential for maintaining cell cycle regulation and primary cilia structure, with mutations causing severe mitotic issues and potential depletion of neuronal progenitors, which could explain the associated microcephaly.
View Article and Find Full Text PDF

Fibulin-4 is an extracellular matrix (ECM) protein essential for elastogenesis and mutations in this protein lead to aneurysm formation. In this study, we isolated vascular smooth muscle cells (VSMCs) from mice with reduced fibulin-4 protein expression (Fibulin-4) and from mice with a smooth muscle cell specific deletion of the Fibulin-4 gene (Fibulin-4/SM22Cre). We subsequently analyzed and compared the molecular consequences of reduced Fibulin-4 expression versus total ablation of Fibulin-4 expression with regard to effects on the SMC specific contractile machinery, cellular migration and TGFβ signaling.

View Article and Find Full Text PDF

Aims: Many glandular lesions can mimic prostate cancer microscopically, including atrophic glands, adenosis and prostatic intraepithelial neoplasia. While the characteristic histopathological and immunohistochemical features of these lesions have been well established, little is known about their three-dimensional architecture. Our objective was to evaluate the three-dimensional organisation of common prostate epithelial lesions.

View Article and Find Full Text PDF

The Gleason score is one of the most important parameters for therapeutic decision-making in prostate cancer patients. Gleason growth patterns are defined by their histological features on 4- to 5-µm cross sections, and little is known about their three-dimensional architecture. Our objective was to characterize the three-dimensional architecture of prostate cancer growth patterns.

View Article and Find Full Text PDF

Liver transplantation is the only effective treatment for end-stage liver disease, but absolute donor shortage remains a limiting factor. Recent advances in tissue engineering focus on generation of native extracellular matrix (ECM) by decellularized complete livers in animal models. Although proof of concept has been reported for human livers, this study aims to perform whole liver decellularization in a clinically relevant series using controlled machine perfusion.

View Article and Find Full Text PDF

In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation.

View Article and Find Full Text PDF

Aims: Microscopic evaluation of prostate specimens for both clinical and research purposes is generally performed on 5-μm-thick tissue sections. Because cross-sections give a two-dimensional (2D) representation, little is known about the actual underlying three-dimensional (3D) architectural features of benign prostate tissue and prostate cancer (PCa). The aim of this study was to show that a combination of tissue-clearing protocols and confocal microscopy can successfully be applied to investigate the 3D architecture of human prostate tissue.

View Article and Find Full Text PDF
Article Synopsis
  • The introduction of fluorescent proteins (FPs) has transformed fluorescence microscopy by allowing for genetic labeling of cells and molecules.
  • Genetic modifications have led to the creation of numerous bright and stable FPs, each with unique characteristics but sharing a similar β-barrel structure that enhances fluorescence.
  • A comprehensive study evaluated over 40 FPs based on brightness, photostability, pH stability, and monomeric properties, aiding researchers in choosing the most suitable FP for their specific needs.
View Article and Find Full Text PDF

Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone.

View Article and Find Full Text PDF

Monocarboxylate transporter 8 (MCT8) is a thyroid hormone (TH)-specific transporter. Mutations in the MCT8 gene are associated with Allan-Herndon-Dudley Syndrome (AHDS), consisting of severe psychomotor retardation and disturbed TH parameters. To study the functional consequences of different MCT8 mutations in detail, we combined functional analysis in different cell types with live-cell imaging of the cellular distribution of seven mutations that we identified in patients with AHDS.

View Article and Find Full Text PDF

Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands.

View Article and Find Full Text PDF

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis.

View Article and Find Full Text PDF