Publications by authors named "Gert Van Isterdael"

This "Best Practices in User Consultation" article is the result of a 2022 International Society for the Advancement of Cytometry (ISAC) membership survey that collected valuable insights from the shared research laboratory (SRL) community and of a group discussion at the CYTO 2022 workshop of the same name. One key takeaway is the importance of initiating a consultation at the outset of a flow cytometry project, particularly for trainees. This approach enables the improvement and standardization of every step, from planning experiments to interpreting data.

View Article and Find Full Text PDF

Over the past decade, the flow cytometry field has witnessed significant advancements in the number of fluorochromes that can be detected. This enables researchers to analyze more than 40 markers simultaneously on thousands of cells per second. However, with this increased complexity and multiplicity of markers, the manual dispensing of antibodies for flow cytometry experiments has become laborious, time-consuming, and prone to errors.

View Article and Find Full Text PDF

The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories.

View Article and Find Full Text PDF

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted.

View Article and Find Full Text PDF

The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked.

View Article and Find Full Text PDF

Plant specialized metabolites modulate developmental and ecological functions and comprise many therapeutic and other high-value compounds. However, the mechanisms determining their cell-specific expression remain unknown. Here we describe the transcriptional regulatory network that underlies cell-specific biosynthesis of triterpenes in Arabidopsis thaliana root tips.

View Article and Find Full Text PDF

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen.

View Article and Find Full Text PDF

Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones.

View Article and Find Full Text PDF

Background: Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging.

View Article and Find Full Text PDF

Genomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions.

View Article and Find Full Text PDF

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN.

View Article and Find Full Text PDF

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury.

View Article and Find Full Text PDF

During plant development, a precise balance of cytokinin is crucial for correct growth and patterning, but it remains unclear how this is achieved across different cell types and in the context of a growing organ. Here we show that in the root apical meristem, the TMO5/LHW complex increases active cytokinin levels via two cooperatively acting enzymes. By profiling the transcriptomic changes of increased cytokinin at single-cell level, we further show that this effect is counteracted by a tissue-specific increase in CYTOKININ OXIDASE 3 expression via direct activation of the mobile transcription factor SHORTROOT.

View Article and Find Full Text PDF

As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue.

View Article and Find Full Text PDF

In cytometry analysis, a large number of markers is measured for thousands or millions of cells, resulting in high-dimensional datasets. During the measurement of these samples, erroneous events can occur such as clogs, speed changes, slow uptake of the sample etc., which can influence the downstream analysis and can even lead to false discoveries.

View Article and Find Full Text PDF

Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of roots, we show an enrichment of TARGET OF MONOPTEROS 5/LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells.

View Article and Find Full Text PDF

Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy.

View Article and Find Full Text PDF

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.

View Article and Find Full Text PDF

Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs.

View Article and Find Full Text PDF

While the roles of parenchymal microglia in brain homeostasis and disease are fairly clear, other brain-resident myeloid cells remain less well understood. By dissecting border regions and combining single-cell RNA-sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the diversity of non-parenchymal brain macrophages. Border-associated macrophages (BAMs) residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets with tissue-specific transcriptional signatures, and their cellular composition changed during postnatal development.

View Article and Find Full Text PDF

Autoimmune myocarditis often leads to dilated cardiomyopathy (DCM). Although T cell reactivity to cardiac self-antigen is common in the disease, it is unknown which antigen presenting cell (APC) triggers autoimmunity. Experimental autoimmune myocarditis (EAM) was induced by immunizing mice with α-myosin loaded bone marrow APCs cultured in GM-CSF.

View Article and Find Full Text PDF

Sepsis in humans and experimental animals is characterized by an acute inflammatory response. glucocorticoids (GCs) are widely used for the treatment of many inflammatory disorders, yet their effectiveness in sepsis is debatable. One of the major anti-inflammatory proteins induced by GCs is glucocorticoid-induced leucine zipper (GILZ, coded by the TSC22D3 gene).

View Article and Find Full Text PDF

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues.

View Article and Find Full Text PDF