Publications by authors named "Gert Thijs"

Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications.

View Article and Find Full Text PDF

A common approach in clinical diagnostic laboratories to variant assessment from tumor molecular profiling is sequencing of genomic DNA extracted from both tumor (somatic) and normal (germline) tissue, with subsequent variant comparison to identify true somatic variants with potential impact on patient treatment or prognosis. However, challenges exist in paired tumor-normal testing, including increased cost of dual sample testing and identification of germline cancer predisposing variants. Alternatively, somatic variants can be identified by in silico tumor-only variant filtration precluding the need for matched normal testing.

View Article and Find Full Text PDF

Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. In our current implementation, the atomic properties that were used to calculate spectrophores include atomic partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach can easily be widened to also include additional atomic properties.

View Article and Find Full Text PDF

Within the context of early drug discovery, a new pharmacophore-based tool to score and align small molecules (Pharao) is described. The tool is built on the idea to model pharmacophoric features by Gaussian 3D volumes instead of the more common point or sphere representations. The smooth nature of these continuous functions has a beneficent effect on the optimization problem introduced during alignment.

View Article and Find Full Text PDF

Background: Several motif detection algorithms have been developed to discover overrepresented motifs in sets of coexpressed genes. However, in a noisy gene list, the number of genes containing the motif versus the number lacking the motif might not be sufficiently high to allow detection by classical motif detection tools. To still recover motifs which are not significantly enriched but still present, we developed a procedure in which we use phylogenetic footprinting to first delineate all potential motifs in each gene.

View Article and Find Full Text PDF

Although proven successful in the identification of regulatory motifs, phylogenetic footprinting methods still show some shortcomings. To assess these difficulties, most apparent when applying phylogenetic footprinting to distantly related organisms, we developed a two-step procedure that combines the advantages of sequence alignment and motif detection approaches. The results on well-studied benchmark datasets indicate that the presented method outperforms other methods when the sequences become either too long or too heterogeneous in size.

View Article and Find Full Text PDF

We present the second and improved release of the TOUCAN workbench for cis-regulatory sequence analysis. TOUCAN implements and integrates fast state-of-the-art methods and strategies in gene regulation bioinformatics, including algorithms for comparative genomics and for the detection of cis-regulatory modules. This second release of TOUCAN has become open source and thereby carries the potential to evolve rapidly.

View Article and Find Full Text PDF

The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.

View Article and Find Full Text PDF

Background: The transcription start site of a metazoan gene remains poorly understood, mostly because there is no clear signal present in all genes. Now that several sequenced metazoan genomes have been annotated, we have been able to compare the base composition around the transcription start site for all annotated genes across multiple genomes.

Results: The most prominent feature in the base compositions is a significant local variation in G+C content over a large region around the transcription start site.

View Article and Find Full Text PDF

Background: The PmrAB (BasSR) two-component regulatory system is required for Salmonella typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within macrophages. The PmrAB system also confers resistance to Fe3+-mediated killing.

View Article and Find Full Text PDF

Motivation: The transcriptional regulation of a metazoan gene depends on the cooperative action of multiple transcription factors that bind to cis-regulatory modules (CRMs) located in the neighborhood of the gene. By integrating multiple signals, CRMs confer an organism specific spatial and temporal rate of transcription.

Results: Based on the hypothesis that genes that are needed in exactly the same conditions might share similar regulatory switches, we have developed a novel methodology to find CRMs in a set of coexpressed or coregulated genes.

View Article and Find Full Text PDF

INCLUSive is a suite of algorithms and tools for the analysis of gene expression data and the discovery of cis-regulatory sequence elements. The tools allow normalization, filtering and clustering of microarray data, functional scoring of gene clusters, sequence retrieval, and detection of known and unknown regulatory elements using probabilistic sequence models and Gibbs sampling. All tools are available via different web pages and as web services.

View Article and Find Full Text PDF

TOUCAN is a Java application for the rapid discovery of significant cis-regulatory elements from sets of coexpressed or coregulated genes. Biologists can automatically (i) retrieve genes and intergenic regions, (ii) identify putative regulatory regions, (iii) score sequences for known transcription factor binding sites, (iv) identify candidate motifs for unknown binding sites, and (v) detect those statistically over-represented sites that are characteristic for a gene set. Genes or intergenic regions are retrieved from Ensembl or EMBL, together with orthologs and supporting information.

View Article and Find Full Text PDF

Motif detection based on Gibbs sampling is a common procedure used to retrieve regulatory motifs in silico. Using a species-specific background model was previously shown to increase the robustness of the algorithm. Here, we demonstrate that selecting a non-species-adapted background model can have an adverse effect on the results of motif detection.

View Article and Find Full Text PDF

Motivation: Microarray experiments generate a considerable amount of data, which analyzed properly help us gain a huge amount of biologically relevant information about the global cellular behaviour. Clustering (grouping genes with similar expression profiles) is one of the first steps in data analysis of high-throughput expression measurements. A number of clustering algorithms have proved useful to make sense of such data.

View Article and Find Full Text PDF

Microarray experiments can reveal important information about transcriptional regulation. In our case, we look for potential promoter regulatory elements in the upstream region of coexpressed genes. Here we present two modifications of the original Gibbs sampling algorithm for motif finding (Lawrence et al.

View Article and Find Full Text PDF

INCLUSive allows automatic multistep analysis of microarray data (clustering and motif finding). The clustering algorithm (adaptive quality-based clustering) groups together genes with highly similar expression profiles. The upstream sequences of the genes belonging to a cluster are automatically retrieved from GenBank and can be fed directly into Motif Sampler, a Gibbs sampling algorithm that retrieves statistically over-represented motifs in sets of sequences, in this case upstream regions of co-expressed genes.

View Article and Find Full Text PDF

PlantCARE is a database of plant cis-acting regulatory elements, enhancers and repressors. Regulatory elements are represented by positional matrices, consensus sequences and individual sites on particular promoter sequences. Links to the EMBL, TRANSFAC and MEDLINE databases are provided when available.

View Article and Find Full Text PDF