To overcome the limitations of the conventional Von Neumann architecture, inspiration from the mammalian brain has led to the development of nanoscale neuromorphic networks. In the present research, molybdenum nanoparticles (NPs), which were produced by means of gas phase condensation based on magnetron sputtering, are shown to be the constituents of electrically percolating networks that exhibit stable, complex, neuron-like spiking behavior at low potentials in the millivolt range, satisfying well the requirement of low energy consumption. Characterization of the NPs using both scanning electron microscopy and scanning transmission electron microscopy revealed not only pristine shape, size, and density control of Mo NPs but also a preliminary proof of the working mechanism behind the spiking behavior due to filament formations.
View Article and Find Full Text PDFTwo new water-soluble cellulose derivatives were prepared by a two-step transformation with 1,3-propane sultone, followed by either maleic or succinic anhydride, thereby converting cellulose into a more easily processable form. It was found that the solubility was dependent on both the degree of substitution and the chemical properties of the substituents. The water-soluble cellulose has a molecular weight greater than 100 000 g mol and both the morphology and molecular weight can be tuned by varying the reaction conditions.
View Article and Find Full Text PDFScarce information is available on the thin film morphology of Dion-Jacobson halide perovskites. However, the microstructure can have a profound impact on a material's photophysics and its potential for optoelectronic applications. The microscopic mechanisms at play in the prototypical 1,4-phenylenedimethanammonium lead iodide (PDMAPbI) Dion-Jacobson compound are here elucidated through a combination of hyperspectral photoluminescence and Raman spectro-microscopy supported by x-ray diffraction.
View Article and Find Full Text PDFThe wetting state of surfaces can be rendered to a highly hydrophobic state by the deposition of hydrophilic gas phase synthesized Ag nanoparticles (NPs). The aging of Ag NPs leads to an increase in their size, which is also associated with the presence of Ag adatoms on the surface between the NPs that have a strong effect on the wetting processes. Furthermore, surface airborne hydrocarbons were removed by UV-ozone treatment, providing deeper insight into the apparent mobility of the NPs on different surfaces and their subsequent ripening and aging.
View Article and Find Full Text PDFInteract Cardiovasc Thorac Surg
November 2021
Objectives: The liquid-solid interactions have attracted broad interest since solid surfaces can either repel or attract fluids, configuring a wide spectrum of wetting states (from superhydrophilicity to superhydrophobicity). Since the blood-artificial surface interaction of bileaflet mechanical heart valves essentially represents a liquid-solid interaction, we analysed the thrombogenicity of mechanical heart valve prostheses from innovative perspectives. The aim of the present study was to modify the surface wettability of standard St.
View Article and Find Full Text PDFWe present here a detailed study of the wettability of surfaces nanostructured with amorphous and crystalline nanoparticles (NPs) derived from the phase-change material GeSbTe (GST). Particular attention was devoted to the effect of airborne surface hydrocarbons on surface wetting. Our analysis illustrates that a reversible hydrophilic-hydrophobic wettability switch is revealed by combined ultraviolet-ozone (UV-O) treatments and exposure to hydrocarbon atmospheres.
View Article and Find Full Text PDFPhase-change GeSbTe nanoparticles (NPs), that are promising for next-generation phase-change memory and other emerging optoelectronic applications, have been deposited on graphene support layers and analyzed using advanced transmission electron microscopy techniques allowing high quality atomic resolution imaging at accelerating voltages as low as 40 kV. The deposition results in about three times higher NP coverage on suspended graphene than on graphene containing an amorphous background support. We attribute this to the variation in surface energy of suspended and supported graphene, indicating that the former harvests NPs more effectively.
View Article and Find Full Text PDFIn this article it is investigated how the hole extraction layer (HEL) influence the charge recombination and performance in half tin and half lead (FASn Pb I ) based solar cells (HPSCs). FASn Pb I film grown on PEDOT:PSS displays a large number of pin-holes and open grain boundaries, resulting in a high defect density and shunts in the perovskite film causing significant bulk and interfacial charge recombination in the HPSCs. By contrast, FASn Pb I films grown on PCP-Na, an anionic conjugated polymer, show compact and pin-hole free morphology over a large area, which effectively eliminates the shunts and trap states.
View Article and Find Full Text PDFReversible amorphous-crystalline phase transitions are studied using complementary ultrafast differential scanning calorimetry and transmission electron microscopy techniques, which together allow a wealth of thermal and structural properties to be determined. The SeTe(As) system is investigated because these chalcogenide based materials have favorable properties as a phase-change memory material and in optical systems. Using calorimetry, we find that the addition of 10 at.
View Article and Find Full Text PDFThe application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((CHCHNH)PbI) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.
View Article and Find Full Text PDFChalcogenide-based phase change materials (PCMs) are promising candidates for the active element in novel electrical nonvolatile memories and have been applied successfully in rewritable optical disks. Nanostructured PCMs are considered as the next generation building blocks for their low power consumption, high storage density, and fast switching speed. Yet their crystallization kinetics at high temperature, the rate-limiting property upon switching, faces great challenges due to the short time and length scales involved.
View Article and Find Full Text PDFIn this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC/Mg/MgO, TiC/MgO and TiH/MgO core/shell NPs via synthesis using CH/H as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes.
View Article and Find Full Text PDFIn this contribution, for the first time, the polarity of fullerene derivatives is tailored to enhance the miscibility between the host and dopant molecules. A fullerene derivative with a hydrophilic triethylene glycol type side chain (PTEG-1) is used as the host and (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine n-DMBI) as the dopant. Thereby, the doping efficiency can be greatly improved to around 18% (<1% for a nonpolar reference sample) with optimized electrical conductivity of 2.
View Article and Find Full Text PDFIn this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H or CH as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2017
Although nanostructured phase-change materials (PCMs) are considered as the building blocks of next-generation phase-change memory and other emerging optoelectronic applications, the kinetics of the crystallization, the central property in switching, remains ambiguous in the high-temperature regime. Therefore, we present here an innovative exploration of the crystallization kinetics of GeSbTe (GST) nanoparticles (NPs) exploiting differential scanning calorimetry with ultrafast heating up to 40 000 K s. Our results demonstrate that the non-Arrhenius thermal dependence of viscosity at high temperature becomes an Arrhenius-like behavior when the glass transition is approached, indicating a fragile-to-strong (FS) crossover in the as-deposited amorphous GST NPs.
View Article and Find Full Text PDFChalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes.
View Article and Find Full Text PDFCore-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment.
View Article and Find Full Text PDFIn the past years, halide capping became one of the most promising strategies to passivate the surface of colloidal quantum dots (CQDs) in thin films to be used for electronic and optoelectronic device fabrication. This is due to the convenient processing, strong n-type characteristics, and ambient stability of the devices. Here, we investigate the effect of three counterions (ammonium, methylammonium, and tetrabutylammonium) in iodide salts used for treating CQD thin films and shed light on the mechanism of the ligand exchange.
View Article and Find Full Text PDFHere we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during their formation and (ii) suppressed Mg evaporation and NP hollowing during Mg hydrogenation at elevated temperature. The mechanism leading to the improved thermal stability of Mg-based bimetallic NPs is shown to be due to MgH2 hydride formation before evaporation can take place.
View Article and Find Full Text PDFNowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge.
View Article and Find Full Text PDF