Publications by authors named "Gert Storm"

miR30d has been shown to reverse cardiac hypertrophy. However, effective delivery of miR30d to the heart is challenging. Here, we engineered milk-derived extracellular vesicles (mEVs) by surface functionalization with an ischemic myocardium-targeting peptide (IMTP) and encapsulated miR30d to develop a formulation, the miR30d-mEVs, enabling targeted delivery of miR30d to the injured heart.

View Article and Find Full Text PDF
Article Synopsis
  • - Sepsis involves an out-of-control immune response, making it challenging to treat effectively; recent research shows that nanomedicines can help in this regard.
  • - In a mouse model, dexamethasone liposomes modified with cRGD peptides effectively target and engage neutrophils, allowing them to accumulate at sites of infection and reduce harmful immune responses.
  • - The targeted liposomes also lower levels of immature neutrophils and inflammatory cytokines, while maintaining beneficial IL-10 levels, showcasing a dual approach of both targeting neutrophils for therapy and using them to deliver drugs.
View Article and Find Full Text PDF

Purpose: To investigate the efficacy of liposomal prednisolone phosphate to mitigate the severity of proliferative vitreoretinopathy (PVR) in a minipig model of PVR.

Methods: A total of 18 eyes of 9 minipigs underwent PVR induction surgically. Eyes were randomized equally into three groups: intravitreal injection of liposomal prednisolone phosphate (LPP), triamcinolone acetonide (TA), and controls.

View Article and Find Full Text PDF

Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease.

View Article and Find Full Text PDF

Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (Le), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4, and CD8 T-cell activation in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigated using bionanovesicles for delivering a photosensitizer drug into cholangiocarcinoma cells to enhance photodynamic therapy (PDT) outcomes.
  • - Two types of bionanovesicles were created from cholangiocarcinoma cells, characterized for size, stability, and efficiency, and shown to effectively deliver the photosensitizer with no toxicity associated with dark conditions.
  • - The results indicated that these vesicles could successfully disperse the photosensitizer inside tumor cells and achieved higher PDT efficiency compared to traditional methods using liposomal forms.
View Article and Find Full Text PDF

The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features.

View Article and Find Full Text PDF

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1).

View Article and Find Full Text PDF

Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169 macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8 T cells.

View Article and Find Full Text PDF

Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake.

View Article and Find Full Text PDF

Diseases affecting the esophagus are common. However, targeted drug delivery to the esophagus is challenging due to the anatomy and physiology of this organ. Current pharmacological treatment for esophageal diseases predominantly relies on the off-label use of drugs in various dosage forms, including those for systemic drug delivery (e.

View Article and Find Full Text PDF

Drug delivery to the retina is one of the major challenges in ophthalmology due to the biological barriers that protect it from harmful substances in the body. Despite the advancement in ocular therapeutics, there are many unmet needs for the treatment of retinal diseases. Ultrasound combined with microbubbles (USMB) was proposed as a minimally invasive method for improving delivery of drugs in the retina from the blood circulation.

View Article and Find Full Text PDF

Milk-derived extracellular vesicles (mEVs) have been proposed as a potential nanomedicine for intestinal disorders; however, their impact on intestinal barrier integrity in gut inflammation and associated metabolic diseases has not been explored yet. Here, mEVs derived from bovine and human breast milk exert similar protective effects on epithelial tight junction functionality in vitro, survive harsh gastrointestinal conditions ex vivo, and reach the colon in vivo. Oral administration of mEVs restores gut barrier integrity at multiple levels, including mucus, epithelial, and immune barriers, and prevents endotoxin translocation into the liver in chemical-induced experimental colitis and diet-induced nonalcoholic steatohepatitis (NASH), thereby alleviating gut disorders, their associated liver inflammation, and NASH.

View Article and Find Full Text PDF

Since tumor stroma poses as a barrier to achieve efficacy of nanomedicines, it is essential to evaluate nano-chemotherapeutics in stroma-mimicking 3D models that reliably predict their behavior regarding these hurdles limiting efficacy. In this study, we evaluated the effect of paclitaxel-loaded polymeric micelles (PTX-PMCs) and polymeric nanoparticles (PTX-PNPs) in a tumor stroma-mimicking 3D in vitro model. PTX-PMCs (77 nm) based on a amphiphilic block copolymer of mPEG-b-p(HPMAm-Bz) and PTX-PNPs (159 nm) based on poly(lactic-co-glycolic acid) were prepared, which had an encapsulation efficiency (EE%) of 81 ± 15% and 45 ± 8%, respectively.

View Article and Find Full Text PDF

The aggressiveness of melanoma and lack of effective therapies incite the discovery of novel strategies. Recently, a new dual acting hybrid molecule (HM), combining a triazene and a ʟ-tyrosine analogue, was synthesized. HM was designed to specifically be activated by tyrosinase, the enzyme involved in melanin biosynthesis and overexpressed in melanoma.

View Article and Find Full Text PDF

Curcumin nanoformulations for intravenous injection have been developed to offset poor absorption, biotransformation, degradation, and excessive clearance associated with parenteral delivery. This review investigates (1) whether intravenous nanoformulations improve curcumin pharmacokinetics (PK) and (2) whether improved PK yields greater therapeutic efficacy. Standard PK parameters (measured maximum concentration [], area under the curve [AUC], distribution volume [], and clearance [CL]) of intravenously administered free curcumin in mice and rats were sourced from literature and compared to curcumin formulated in nanoparticles, micelles, and liposomes.

View Article and Find Full Text PDF

Alternatively-activated, M2-like tumor-associated macrophages (TAM) strongly contribute to tumor growth, invasiveness and metastasis. Technologies to disable the pro-tumorigenic function of these TAMs are of high interest to immunotherapy research. Here we show that by designing engineered nanoliposomes bio-mimicking peroxidated phospholipids that are recognised and internalised by scavenger receptors, TAMs can be targeted.

View Article and Find Full Text PDF

Enzyme-activatable prodrugs are extensively employed in oncology and beyond. Because enzyme concentrations and their (sub)cellular compartmentalization are highly heterogeneous in different tumor types and patients, we propose ultrasound-directed enzyme-prodrug therapy (UDEPT) as a means to increase enzyme access and availability for prodrug activation locally. We synthesized β-glucuronidase-sensitive self-immolative doxorubicin prodrugs with different spacer lengths between the active drug moiety and the capping group.

View Article and Find Full Text PDF

After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines.

View Article and Find Full Text PDF

The combination of ultrasound and microbubbles (USMB) has been applied to enhance drug permeability across tissue barriers. Most studies focused on only one physicochemical aspect (i.e.

View Article and Find Full Text PDF

Cancer vaccination aims to activate immunity towards cancer cells and can be achieved by delivery of cancer antigens together with immune stimulatory adjuvants to antigen presenting cells (APC). APC maturation and antigen processing is a subsequent prerequisite for T cell priming and anti-tumor immunity. In order to specifically target APC, nanoparticles, such as liposomes, can be used for the delivery of antigen and adjuvant.

View Article and Find Full Text PDF

PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles.

View Article and Find Full Text PDF

The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood-retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases.

View Article and Find Full Text PDF

Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169 monocytes.

View Article and Find Full Text PDF