Publications by authors named "Gert Roos"

The feeding apparatus of Syngnathidae, with its elongate tubular snout and tiny, toothless jaws, is highly specialized for performing fast and powerful pivot feeding. In addition, the prolonged syngnathid parental care probably enables the juveniles to be provided with a feeding apparatus that resembles the one in adults, both in morphology and function. In this study, a landmark-based geometric morphometric analysis was carried out on the head of syngnathid representatives in order to (1) examine to what degree pipefish shape variation is different from that of seahorses; (2) determine whether the high level of specialization reduces the amount of intraspecific morphological variation found within the family; and (3) elucidate whether or not important shape changes occur in the seahorse head during postrelease ontogeny.

View Article and Find Full Text PDF

The body shape of seahorses resembles the head and neck of horses because of their curved trunk, their ventrally bent head and their long snout. Seahorses evolved from ancestral, pipefish-like species, which have a straight body. Here, we use a biomechanical analysis and show that the seahorse's peculiar head, neck and trunk posture allows for the capture of small shrimps at larger distances from the eyes compared with pipefish.

View Article and Find Full Text PDF

Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical determinant of the suction performance, this snout allometry will inevitably affect the suction feeding ability.

View Article and Find Full Text PDF

As juvenile life-history stages are subjected to strong selection, these stages often show levels of performance approaching those of adults, or show a disproportionately rapid increase of performance with age. Although testing performance capacity in aquatic suction feeders is often problematic, in pivot feeders such as seahorses models have been proposed to estimate whether snout length is optimal to minimise the time needed to reach the prey. Here, we investigate whether the same model can also explain the snout lengths in an ontogenetic series of seahorses, explore how pivot feeding kinematics change during ontogeny, and test whether juveniles show disproportionate levels of performance.

View Article and Find Full Text PDF

Fish typically use a rostro-caudal wave of head expansion to generate suction, which is assumed to cause a uni-directional, anterior-to-posterior flow of water in the expanding head. However, compared with typical fish, syngnathid fishes have a remarkably different morphology (elongated snout, small hyoid, immobile pectoral girdle) and feeding strategy (pivot feeding: bringing the small mouth rapidly close to the prey by neurocranial dorsorotation). As a result, it is unclear how suction is generated in Syngnathidae.

View Article and Find Full Text PDF

Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon.

View Article and Find Full Text PDF

Syngnathid fishes (seahorses, pipefish, and sea dragons) possess a highly modified cranium characterized by a long and tubular snout with minute jaws at its end. Previous studies indicated that these species are extremely fast suction feeders with their feeding strike characterized by a rapid elevation of the head accompanied by rotation of the hyoid. A planar four-bar model is proposed to explain the coupled motion of the neurocranium and the hyoid.

View Article and Find Full Text PDF