The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (, syn. ). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans.
View Article and Find Full Text PDFBackground: Rodent borne hantaviruses are emerging viruses infecting humans through inhalation. They cause hemorrhagic fever with renal syndrome and hemorrhagic cardiopulmonary syndrome. Recently, hantaviruses have been detected in other small mammals such as Soricomorpha (shrews, moles) and Chiroptera (bats), suggested as reservoirs for potential pandemic viruses and to play a role in the evolution of hantaviruses.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
September 2020
Natural reservoirs of zoonotic pathogens generally seem to be capable of tolerating infections. Tolerance and its underlying mechanisms remain difficult to assess using experiments or wildlife surveys. High-throughput sequencing technologies give the opportunity to investigate the genetic bases of tolerance, and the variability of its mechanisms in natural populations.
View Article and Find Full Text PDFBackground: To predict the risk of infectious diseases originating in wildlife, it is important to identify habitats that allow the co-occurrence of pathogens and their hosts. Puumala hantavirus (PUUV) is a directly-transmitted RNA virus that causes hemorrhagic fever in humans, and is carried and transmitted by the bank vole (Myodes glareolus). In northern Sweden, bank voles undergo 3-4 year population cycles, during which their spatial distribution varies greatly.
View Article and Find Full Text PDFAlthough local prevalence of Echinococcus multilocularis may be high, this zoonotic parasite has an overall low prevalence in foxes and rodents in Sweden. To better understand opportunities for E. multilocularis transmission in the Swedish environment, the aim of this study was to investigate other taeniid cestodes and to relate observed patterns to E.
View Article and Find Full Text PDFLjungan virus (LV) is a picornavirus originally isolated from Swedish bank voles ( Myodes glareolus ) in 1998. The association of LV with human disease has been debated ever since, but fundamental data on the ecology of the virus are still lacking. Here we present results of the first intensive study on the prevalence of LV in bank voles trapped in Fennoscandia (Sweden and Finland) from 2009-12 as determined by PCR.
View Article and Find Full Text PDFIntroduction: To study the presence of European bat lyssavirus (EBLV) infections in bat reservoirs in Sweden, active surveillance was performed during the summers from 2008 to 2013.
Material And Methods: Bat specimens were collected at >20 bat colonies in the central, southeastern, and southern parts of Sweden. In total, blood and saliva of 452 bats were examined by a virus neutralization test and by reverse transcription polymerase chain reactions (RT-PCRs).
Background: Localized concentrations of Echinococcus multilocularis eggs from feces of infected red fox (Vulpes vulpes) can create areas of higher transmission risk for rodent hosts and possibly also for humans; therefore, identification of these areas is important. However, in a low prevalence environment, such as Sweden, these areas could be easily overlooked. As part of a project investigating the role of different rodents in the epidemiology of E.
View Article and Find Full Text PDFBank voles are known reservoirs for Puumala hantavirus and probably also for Ljungan virus (LV), a suggested candidate parechovirus in type 1 diabetes etiology and pathogenesis. The aim of this study was to determine whether wild bank voles had been exposed to LV and if exposure associated to autoantibodies against insulin (IAA), glutamic acid decarboxylase 65 (GADA), or islet autoantigen-2 (IA-2A). Serum samples from bank voles (Myodes glareolus) captured in early summer or early winter of 1997 and 1998, respectively, were analyzed in radio binding assays for antibodies against Ljungan virus (LVA) and Puumala virus (PUUVA) as well as for IAA, GADA, and IA-2A.
View Article and Find Full Text PDFInt J Parasitol Parasites Wildl
April 2016
Echinococcus multilocularis is a zoonotic tapeworm with a sylvatic lifecycle and an expanding range in Europe. Monitoring efforts following its first identification in 2011 in Sweden have focused on the parasite's definitive host, the red fox (Vulpes vulpes). However, identifying rodent intermediate hosts is important to recognize opportunities for parasite transmission.
View Article and Find Full Text PDFThe common cat tapeworm Hydatigera taeniaeformis is a complex of three morphologically cryptic entities, which can be differentiated genetically. To clarify the biogeography and the host spectrum of the cryptic lineages, 150 specimens of H. taeniaeformis in various definitive and intermediate hosts from Eurasia, Africa and Australia were identified with DNA barcoding using partial mitochondrial cytochrome c oxidase subunit 1 gene sequences and compared with previously published data.
View Article and Find Full Text PDFPathogenic hantaviruses (family Bunyaviridae, genus Hantavirus) are rodent-borne viruses causing hemorrhagic fever with renal syndrome (HFRS) in Eurasia. In Europe, there are more than 10,000 yearly cases of nephropathia epidemica (NE), a mild form of HFRS caused by Puumala virus (PUUV). The common and widely distributed bank vole (Myodes glareolus) is the host of PUUV.
View Article and Find Full Text PDFBackground: In this paper, the hazard and exposure concepts from risk assessment are applied in an innovative approach to understand zoonotic disease risk. Hazard is here related to the landscape ecology determining where the hosts, vectors and pathogens are and, exposure is defined as the attractiveness and accessibility to hazardous areas. Tick-borne encephalitis in Sweden was used as a case study.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
August 2014
Int J Health Geogr
September 2012
Because their distribution usually depends on the presence of more than one species, modelling zoonotic diseases in humans differs from modelling individual species distribution even though the data are similar in nature. Three approaches can be used to model spatial distributions recorded by points: based on presence/absence, presence/available or presence data. Here, we compared one or two of several existing methods for each of these approaches.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
August 2010
Five hantaviruses are known to circulate among rodents in Europe, and at least two among insectivores. Four (Dobrava, Saaremaa, Seoul, and Puumala [PUUV] viruses) are clearly associated with hemorrhagic fever with renal syndrome (HFRS). PUUV, the most common etiological agent of HFRS in Europe, is carried by the bank vole (Myodes glareolus), one of the most widespread and abundant mammal species in Europe.
View Article and Find Full Text PDFThe tumor necrosis factor-alpha (TNF-α) influences the ability to limit parasite infection but its over-production might result in inflammatory disorders. The level of Tnf-α gene expression could thus mediate a balance of tolerance/resistance to infections. This study focused on Puumala hantavirus (PUUV) infection in its rodent host, the bank vole (Myodes glareolus).
View Article and Find Full Text PDFWe analysed the influence of MHC class II Dqa and Drb genes on Puumala virus (PUUV) infection in bank voles (Myodes glareolus). We considered voles sampled in five European localities or derived from a previous experiment that showed variable infection success of PUUV. The genetic variation observed in the Dqa and Drb genes was assessed by using single-strand conformation polymorphism and pyrosequencing methods, respectively.
View Article and Find Full Text PDFThe genus Hantavirus (family Bunyaviridae) includes negative-strand RNA viruses that are carried by persistently infected rodent and insectivore species. Puumala virus (PUUV), carried by bank voles (Myodes glareolus), is a pathogenic hantavirus that causes outbreaks of mild haemorrhagic fever with renal syndrome across Europe. In northern Europe, PUUV is represented by several genetic lineages that are maintained by distinct phylogroups of bank voles.
View Article and Find Full Text PDFPuumala hantavirus is present in bank voles (Myodes glareolus) and is believed to be spread mainly by contaminated excretions. In this study, we subcutaneously inoculated 10 bank voles with Puumala virus and sampled excretions until day 133 postinfection. Levels of shed viral RNA peaked within 11-28, 14-21, and 11-28 days postinfection for saliva, urine, and feces, respectively.
View Article and Find Full Text PDF