Electron backscatter diffraction (EBSD) patterns can exhibit Kikuchi bands with inverted contrast due to anomalous absorption. This can be observed, for example, on samples with nanoscale topography, in case of a low tilt backscattering geometry, or for transmission Kikuchi diffraction (TKD) on thicker samples. Three examples are discussed where contrast-inverted physics-based simulated master patterns have been applied to find the correct crystal orientation.
View Article and Find Full Text PDFTo visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed c/a, while PM determines a best fitting continuous c/a by projective transformation of a master pattern.
View Article and Find Full Text PDFA band width determination using the first derivative of the band profile systematically underestimates the true Bragg angle. Corrections are proposed to compensate for the resulting offset Δ/ of the mean lattice parameters derived from as many Kikuchi band widths as possible. For dynamically simulated Kikuchi patterns, Δ/ can reach up to 8% for phases with a high mean atomic number , whereas for much more common low- materials the offset decreases linearly.
View Article and Find Full Text PDFA pseudosymmetric description of the crystal lattice derived from a single wide-angle Kikuchi pattern can have several causes. The small size (<15%) of the sector covered by an electron backscatter diffraction pattern, the limited precision of the projection centre position and the Kikuchi band definition are crucial. Inherent pseudosymmetries of the crystal lattice and/or structure also pose a challenge in the analysis of Kikuchi patterns.
View Article and Find Full Text PDFThe derivation of a crystal structure and its phase-specific parameters from a single wide-angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically and reproducibly the band widths in simulated Kikuchi patterns. Even under such ideal conditions (projection centre, wavelength and lattice plane traces are perfectly known), this leads to a lattice parameter distribution whose mean shows a linear offset that correlates with the mean atomic number of the pattern-forming phase.
View Article and Find Full Text PDFMaterials (Basel)
December 2022
This paper presents the results of a study of the morphology and structure at the weld interface in a brass-Invar bimetal, which belongs to the class of so-called thermostatic bimetals, or thermobimetals. The structure of the brass-Invar weld interface was analyzed using optical microscopy and scanning electron microscopy (SEM), with the use of energy-dispersive X-ray (EDX) spectrometry and back-scattered electron diffraction (BSE) to identify the phases. The distribution of the crystallographic orientation of the grains at the weld interface was obtained using an e-Flash HR electron back-scatter diffraction (EBSD) detector and a forward-scatter detector (FSD).
View Article and Find Full Text PDFSignal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen.
View Article and Find Full Text PDFWe discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns.
View Article and Find Full Text PDFA new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances.
View Article and Find Full Text PDFOrientation mapping of quasicrystalline materials is demonstrated using crystalline approximant structures in the technique of electron backscatter diffraction (EBSD). The approximant-based orientations are symmetrised according to the rotational point group of the quasicrystal, including the visualization of orientation maps using proper colour keys for quasicrystal symmetries. Alternatively, approximant-based orientation data can also be treated using pseudosymmetry post-processing options in the EBSD system software, which enables basic grain size estimations.
View Article and Find Full Text PDFThe effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved.
View Article and Find Full Text PDFFor the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained.
View Article and Find Full Text PDFA historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
November 2018
The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.
View Article and Find Full Text PDFIn order to understand the physical and chemical properties of advanced materials, functional molecular adsorbates, and protein structures, a detailed knowledge of the atomic arrangement is essential. Up to now, if subsurface structures are under investigation, only indirect methods revealed reliable results of the atoms' spatial arrangement. An alternative and direct method is three-dimensional imaging by means of holography.
View Article and Find Full Text PDFWe demonstrate an approach to overcome Kikuchi pattern misindexing problems caused by crystallographic pseudosymmetry in electron backscatter diffraction (EBSD) measurements. Based on the quantitative comparison of experimentally measured Kikuchi patterns with dynamical electron diffraction simulations, the algorithm identifies the best-fit orientation from a set of pseudosymmetric candidates. Using measurements on framboidal pyrite (FeS2) as an example, we also show the improvement of the orientation precision using this approach.
View Article and Find Full Text PDFUltramicroscopy
February 2015
We demonstrate the determination of crystal chirality using electron backscatter diffraction (EBSD) in the scanning electron microscope. The chirality of α-quartz as a space-group-dependent property is verified via direct comparison of experimental diffraction features to simulations using the dynamical theory of electron diffraction.
View Article and Find Full Text PDFMicrosc Microanal
August 2013
Pole figures are often used to present crystal orientation data. The huge number of single orientation measurements acquired by electron backscatter diffraction (EBSD) poses a challenge for pole figure representation due to the large number of calculations required. This significantly reduces the speed at which the data may be rotated and affects the ability to switch between different projection types.
View Article and Find Full Text PDFUltramicroscopy
February 2010
We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam.
View Article and Find Full Text PDFA new technique for investigation of interfacial dislocations in nickel-base superalloys by scanning electron microscopy is presented. At high temperatures the pressure of interfacial dislocations against the gamma/gamma'-interface causes grooves. This 'fingerprint of the dislocation network' is visualized by deep selective etching, which removes the gamma'-phase down to the gamma/gamma'-interface.
View Article and Find Full Text PDFThe high sample tilt angle commonly necessary for an orientation determination by EBSD (electron back-scatter diffraction) is responsible for some simple geometrically caused, but nevertheless essential, image distortions. First of all, the influence of the tilt correction and also the trapezium distortion which appears at low magnifications will be discussed. In the second part, an additional rhomboidal distortion will be introduced which is independent of the magnification used.
View Article and Find Full Text PDF