Publications by authors named "Gert Forkmann"

Multiple F3'5'H evolution from F3'H has occurred in dicotyledonous plants. Efficient pollinator attraction is probably the driving force behind, as this allowed for the synthesis of delphinidin-based blue anthocyanins. The cytochrome P450-dependent monooxygenases flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) hydroxylate the B-ring of flavonoids at the 3'- and 3'- and 5'-position, respectively.

View Article and Find Full Text PDF

Products containing the epiphytic yeast Aureobasidium pullulans are commercially available and applied by fruit growers to prevent several fungal and bacterial diseases of fruit trees. The proposed beneficial mechanisms relate to limitations of space and nutrients for the pathogens in presence of the rapidly proliferating yeast cells. These explanations ignore the potential of yeasts to elicit the plant's defense.

View Article and Find Full Text PDF

Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic pathways in apple (Malus domestica Borkh.

View Article and Find Full Text PDF

Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher.

View Article and Find Full Text PDF

Modern biotechnology has developed powerful tools for genetic engineering and flower colours are an excellent object to study possibilities and limitations of engineering strategies. Osteospermum hybrida became a popular ornamental plant within the last 20 years. Many cultivars display rose to lilac flower colours mainly based on delphinidin-derived anthocyanins.

View Article and Find Full Text PDF

Flavonoids are ubiquitous secondary plant metabolites which function as protectants against UV light and pathogens and are involved in the attraction of pollinators as well as seed and fruit dispersers. The hydroxylation pattern of the B-ring of flavonoids is determined by the activity of two members of the vast and versatile cytochrome P450 protein (P450) family, the flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H). Phylogenetic analysis of known sequences of F3'H and F3'5'H indicated that F3'5'H was recruited from F3'H before the divergence of angiosperms and gymnosperms.

View Article and Find Full Text PDF

Catechin and epicatechin biosyntheses were studied of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crop leaves, since these monomers and the derived proanthocyanidins are important disease resistance factors.

View Article and Find Full Text PDF

Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves.

View Article and Find Full Text PDF

Fire blight, a devastating bacterial disease in pome fruits, causes severe economic losses worldwide. Hitherto, an effective control could only be achieved by using antibiotics, but this implies potential risks for human health, livestock and environment. A new approach allows transient inhibition of a step in the flavonoid pathway, thereby inducing the formation of a novel antimicrobial 3-deoxyflavonoid controlling fire blight in apple and pear leaves.

View Article and Find Full Text PDF

Flavone synthases (FNSs) catalyze the oxidation of flavanones to flavones, i.e. the formation of apigenin from (2S)-naringenin.

View Article and Find Full Text PDF

Treatment with the dioxygenase inhibitor prohexadione-Ca leads to major changes in the flavonoid metabolism of apple (Malus domestica) and pear (Pyrus communis) leaves. Accumulation of unusual 3-deoxyflavonoids is observed, which have been linked to an enhanced resistance toward fire blight. The committed step in this pathway is the reduction of flavanones.

View Article and Find Full Text PDF

Dihydroflavonol 4-reductases (DFR) catalyze the stereospecific reduction of dihydroflavonols to the respective flavan 3,4-diols (leucoanthocyanidins) and might also be involved in the reduction of flavanones to flavan-4-ols, which are important intermediates in the 3-deoxyflavonoid pathway. Several cDNA clones encoding DFR have been isolated from different plant species. Despite the important function of these enzymes in the flavonoid pathway, attempts at heterologous expression of cDNA clones in Escherichia coli have failed so far.

View Article and Find Full Text PDF