Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality.
View Article and Find Full Text PDFThe deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation.
View Article and Find Full Text PDFObjective: To assess if a coding variant in the gene encoding transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is associated with genetic risk of painful knee osteoarthritis (OA).
Methods: The Ile585Val TRPV1 variant encoded by rs8065080 was genotyped in 3270 cases of symptomatic knee OA, 1098 cases of asymptomatic knee OA and 3852 controls from seven cohorts from the UK, the USA and Australia. The genetic association between the low-pain genotype Ile-Ile and risk of symptomatic and asymptomatic knee OA was assessed.
Nuclear factor kappaB (NF-kappaB) is one of the key regulators of transcription of a variety of genes involved in immune and inflammatory responses. NF-kappaB activity has long been thought to be regulated mainly by IkappaB family members, which keep the transcription factor complex in an inactive form in the cytoplasm by masking the nuclear localization signal. Nowadays, the importance of additional mechanisms controlling the nuclear transcription potential of NF-kappaB is generally accepted.
View Article and Find Full Text PDFNuclear factor-kappaB (NF-kappaB) is well known for its role in inflammation, immune response, control of cell division and apoptosis. The function of NF-kappaB is primarily regulated by IkappaB family members, which ensure cytoplasmic localisation of the transcription factor in the resting state. Upon stimulus-induced IkappaB degradation, the NF-kappaB complexes move to the nucleus and activate NF-kappaB-dependent transcription.
View Article and Find Full Text PDF