Background: The number of circulating blood monocytes impacts atherosclerotic lesion size, and in mouse models, elevated levels of high-density lipoprotein cholesterol suppress blood monocyte counts and atherosclerosis. We hypothesized that individuals with mild renal dysfunction at increased cardiovascular risk would have reduced high-density lipoprotein levels, high blood monocyte counts, and accelerated atherosclerosis.
Methods And Results: To test whether mild renal dysfunction is associated with an increase in a leukocyte subpopulation rich in monocytes that has a known association with future coronary events, we divided individuals from the Malmö Diet and Cancer study (MDC) into baseline cystatin C quintiles (n=4757).
Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening.
View Article and Find Full Text PDFAims: We recently identified a metabolic signature of three amino acids (tyrosine, phenylalanine, and isoleucine) that strongly predicts diabetes development. As novel modifiable targets for intervention are needed to meet the expected increase of cardiovascular disease (CVD) caused by the diabetes epidemic, we investigated whether this diabetes-predictive amino acid score (DM-AA score) predicts development of CVD and its functional consequences.
Methods And Results: We performed a matched case-control study derived from the population-based Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC), all free of CVD.
Unlabelled: What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism.
View Article and Find Full Text PDFOrganophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities.
View Article and Find Full Text PDFBackground: Because cancer patients survive longer, the impact of cardiotoxicity associated with the use of cancer treatments escalates. The present study investigates whether early alterations of myocardial strain and blood biomarkers predict incident cardiotoxicity in patients with breast cancer during treatment with anthracyclines, taxanes, and trastuzumab.
Methods And Results: Eighty-one women with newly diagnosed human epidermal growth factor receptor 2-positive breast cancer, treated with anthracyclines followed by taxanes and trastuzumab were enrolled to be evaluated every 3 months during their cancer therapy (total of 15 months) using echocardiograms and blood samples.
Background: Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood.
Methods And Results: To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmö Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease.
The metabolome is the terminal downstream product of the genome and consists of the total complement of all the low-molecular-weight molecules (metabolites) in a cell, tissue, or organism. Metabolomics aims to measure a wide breadth of small molecules in the context of physiological stimuli or disease states. Metabolomics methodologies fall into two distinct groups: untargeted metabolomics, an intended comprehensive analysis of all the measurable analytes in a sample including chemical unknowns, and targeted metabolomics, the measurement of defined groups of chemically characterized and biochemically annotated metabolites.
View Article and Find Full Text PDFThe utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%.
View Article and Find Full Text PDFAberrant cholesterol/lipid homeostasis is linked to a number of diseases prevalent in the developed world, including metabolic syndrome, type II diabetes, and cardiovascular disease. We have previously uncovered gene regulatory mechanisms of the sterol regulatory element-binding protein (SREBP) family of transcription factors, which control the expression of genes involved in cholesterol and lipid biosynthesis and uptake. Intriguingly, we recently discovered conserved microRNAs (miR-33a/b) embedded within intronic sequences of the human SREBF genes that act in a concerted manner with their host gene products to regulate cholesterol/lipid homeostasis.
View Article and Find Full Text PDFBackground: Metabolomics, the systematic analysis of low molecular weight biochemical compounds in a biological specimen, has been increasingly applied to biomarker discovery.
Content: Because no single analytical method can accommodate the chemical diversity of the entire metabolome, various methods such as nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) have been employed, with the latter coupled to an array of separation techniques including gas and liquid chromatography. Whereas NMR can provide structural information and absolute quantification for select metabolites without the use of exogenous standards, MS tends to have much higher analytical sensitivity, enabling broader surveys of the metabolome.
Despite unmet needs for cardiovascular biomarkers, few new protein markers have been approved by the US Food and Drug Administration for the diagnosis or screening of cardiovascular diseases. Mass spectrometry-based proteomics technologies are capable of identifying hundreds to thousands of proteins in cells, tissues, and biofluids. Proteomics may therefore provide the opportunity to elucidate new biomarkers and pathways without a prior known association with cardiovascular disease; however, important obstacles remain.
View Article and Find Full Text PDFRationale: Integrin-linked kinase (ILK) is located at focal adhesions and links the extracellular matrix (ECM) to the actin cytoskeleton via β1- and β3-integrins. ILK plays a role in the activation of kinases including protein kinase B/Akt and glycogen synthase kinase 3β and regulates cell proliferation, motility, and survival.
Objective: To determine the function of ILK in vascular smooth muscle cells (SMCs) in vivo.
We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI).
View Article and Find Full Text PDFObjectives: The purpose of this study was to assess whether: 1) very small increases in troponin T, measured by a new highly sensitive cardiac troponin T (hs-cTnT), may reflect ischemia without necrosis; and 2) serial changes can discriminate ischemia from other causes of cardiac troponin T (cTnT) release.
Background: A new hs-cTnT assay offers greater sensitivity than current assays.
Methods: Nineteen patients referred for diagnostic catheterization underwent cannulation of the coronary sinus (CS).
Vascular endothelium provides a selective barrier between the blood and tissues, participates in wound healing and angiogenesis, and regulates tissue recruitment of inflammatory cells. Nuclear factor (NF)-κB transcription factors are pivotal regulators of survival and inflammation, and have been suggested as potential therapeutic targets in cancer and inflammatory diseases. Here we show that mice lacking IKKβ, the primary kinase mediating NF-κB activation, are smaller than littermates and born at less than the expected Mendelian frequency in association with hypotrophic and hypovascular placentae.
View Article and Find Full Text PDFIn this issue of Science Translational Medicine, Laferrère and colleagues describe a metabolite profiling approach to investigate changes in the circulating metabolome after equivalent weight loss spurred by either gastric bypass surgery (GBP) or dietary intervention. The results reveal that GBP enhances branched chain amino acid metabolism by mechanisms separate from weight loss. These observations raise the possibility that changes in circulating amino acids play a role in the correction of glycemic control observed shortly after GBP.
View Article and Find Full Text PDFEmerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes.
View Article and Find Full Text PDFDyslipidemia is an independent risk factor for type 2 diabetes, although exactly which of the many plasma lipids contribute to this remains unclear. We therefore investigated whether lipid profiling can inform diabetes prediction by performing liquid chromatography/mass spectrometry-based lipid profiling in 189 individuals who developed type 2 diabetes and 189 matched disease-free individuals, with over 12 years of follow up in the Framingham Heart Study. We found that lipids of lower carbon number and double bond content were associated with an increased risk of diabetes, whereas lipids of higher carbon number and double bond content were associated with decreased risk.
View Article and Find Full Text PDFAs breast cancer survival increases, cardiotoxicity associated with chemotherapeutic regimens such as anthracyclines and trastuzumab becomes a more significant issue. Assessment of the left ventricular (LV) ejection fraction fails to detect subtle alterations in LV function. The objective of this study was to evaluate whether more sensitive echocardiographic measurements and biomarkers could predict future cardiac dysfunction in chemotherapy-treated patients.
View Article and Find Full Text PDFObjective: Current management of aortic aneurysms (AAs) relies primarily on size criteria to determine whether invasive repair is indicated to preempt rupture. We hypothesized that emerging molecular imaging tools could be used to more sensitively gauge local inflammation. Because macrophages are key effector cells that destabilize the extracellular matrix in the arterial wall, it seemed likely that they would represent suitable imaging targets.
View Article and Find Full Text PDFBackground: Troponin is the preferred biomarker for risk stratification in non-ST elevation ACS. The incremental prognostic use of the initial magnitude of troponin elevation and its value in conjunction with ST-segment resolution (STRes) in ST elevation myocardial infarction (STEMI) is less well defined.
Methods: Troponin T (TnT) was measured in 1,250 patients at presentation undergoing fibrinolysis for STEMI in CLARITY-TIMI 28.
Exercise provides numerous salutary effects, but our understanding of how these occur is limited. To gain a clearer picture of exercise-induced metabolic responses, we have developed comprehensive plasma metabolite signatures by using mass spectrometry to measure >200 metabolites before and after exercise. We identified plasma indicators of glycogenolysis (glucose-6-phosphate), tricarboxylic acid cycle span 2 expansion (succinate, malate, and fumarate), and lipolysis (glycerol), as well as modulators of insulin sensitivity (niacinamide) and fatty acid oxidation (pantothenic acid).
View Article and Find Full Text PDFMotivation: The discovery of new and unexpected biomarkers in cardiovascular disease is a highly data-driven process that requires the complementary power of modern metabolite profiling technologies, bioinformatics and biostatistics. Clinical biomarkers of early myocardial injury are lacking. A prospective biomarker cohort study was carried out to identify, categorize and profile kinetic patterns of early metabolic biomarkers of planned myocardial infarction (PMI) and spontaneous (SMI) myocardial infarction.
View Article and Find Full Text PDF