Realizing plasmonic nanogaps with a refractive index ( = 1) environment in metallic nanoparticle (NP) structures is highly attractive for a wide range of applications. So far in self-assembly-based approaches, without surface functionalization of metallic NPs, achieving such extremely small nanogaps is challenging. Surface functionalization introduces changes in the refractive index at nanogaps, which in turn deteriorates the desired plasmonic properties.
View Article and Find Full Text PDFMost properties of solid materials are defined by their internal electric field and charge density distributions which so far are difficult to measure with high spatial resolution. Especially for 2D materials, the atomic electric fields influence the optoelectronic properties. In this study, the atomic-scale electric field and charge density distribution of WSe bi- and trilayers are revealed using an emerging microscopy technique, differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Exciton transfers are ubiquitous and extremely important processes, but often poorly understood. A recent example is the triplet exciton transfer in tetracene sensitized silicon solar cells exploited for harvesting high-energy photons. The present ab initio molecular dynamics calculations for tetracene-Si(111):H interfaces show that Si dangling bonds, intuitively expected to hinder the exciton transfer, actually foster it.
View Article and Find Full Text PDFCoherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (V) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the V spin with a characteristic decay time = 15 μs, close to the theoretically predicted limit of 18 μs for defects in hBN.
View Article and Find Full Text PDFThe adsorption of N-heterocyclic carbenes (NHCs) on Cu(111) and Au(111) surfaces is studied with density-functional theory. The role of the molecular side groups as well as the surface morphology in determining the adsorption geometry are explored in detail. Flat-laying NHCs, as observed experimentally for NHC with relatively small side groups, result from the adsorption at adatoms and give rise to the so-called ballbot configurations, which are more stable than adsorption on flat surfaces and provide an efficient precursor for the formation of bis(NHC) dimers.
View Article and Find Full Text PDFThe nitrogen-vacancy (NV) center in 3-SiC, the analog of the NV center in diamond, has recently emerged as a solid-state qubit with competitive properties and significant technological advantages. Combining first-principles calculations and magnetic resonance spectroscopy, we provide thorough insight into its magneto-optical properties. By applying resonantly excited electron paramagnetic resonance spectroscopy, we identified the zero-phonon absorption line of the → transition at 1289 nm (within the telecom O-band) and measured its phonon sideband, the analysis of which reveals a Huang-Rhys factor of = 2.
View Article and Find Full Text PDFThe radioactive nuclide Cs that was released during the Chernobyl accident in 1986 is still present in the environment of wide parts of Middle Europe. It causes internal radiation exposure of people who incorporate this radionuclide when eating contaminated food, in particular boar meat and certain kinds of wild mushrooms. This study investigates the exposure of German hunters and their family members, which are supposed to consume these kinds of food more frequently than the general population.
View Article and Find Full Text PDFN-Heterocyclic carbenes (NHCs) are promising modifiers and anchors for surface functionalization and offer some advantages over thiol-based systems. Because of their strong binding affinity and high electron donation, NHCs can dramatically change the properties of the surfaces to which they are bonded. Highly ordered NHC monolayers have so far been limited to metal surfaces.
View Article and Find Full Text PDFThe attachment of homoleptic Ru bis-terpy complexes on graphene oxide significantly improved the photocatalytic activity of the complexes. These straightforward complexes were applied as photocatalysts in a Heck reaction. Due to covalent functionalization on graphene oxide, which functions as an electron reservoir, excellent yields were obtained.
View Article and Find Full Text PDFA constrained density functional theory/classical trajectory surface hopping study of the photochemical dissociation of oxirane (CH)O is presented. The calculations confirm the Gomer-Noyes mechanism for the initial reaction and agree largely with experimental photolysis data including reaction yields. The calculated yields, however, depend both on temperature and its modeling.
View Article and Find Full Text PDFThe rapid and reliable detection of lethal agents such as sarin is of increasing importance. Here, density-functional theory (DFT) is used to compare the interaction of sarin with single-metal-centered phthalocyanine (MPc) and MPc layer structures to a benign model system, i.e.
View Article and Find Full Text PDFDensity-functional theory is used to explore the Si(553)-Au surface dynamics. Our study (i) reveals a complex two-stage order-disorder phase transition where with rising temperature first the ×3 order along the Si step edges and, subsequently, the ×2 order of the Au chains is lost, (ii) identifies the transient modification of the electron chemical potential during soft Au chain vibrations as instrumental for disorder at the step edge, and (iii) shows that the transition leads to a self-doping of the Si dangling-bond wire at the step edge. The calculations are corroborated by Raman measurements of surface phonon modes and explain previous electron diffraction, scanning tunneling microscopy, and surface transport data.
View Article and Find Full Text PDFWe present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2019
The atomic geometry and energetics of oxygen and potassium vacancies in potassium titanyl phosphate (KTP) as well as their electronic and optical properties are studied within density-functional theory in dependence of their charge state. Oxygen vacancies formed between Ti and P are characterized by a negative-U behavior. Their neutral charge state is favored for Fermi levels near the conduction band and gives rise to a defect level in the band gap, which leads to an additional optical absorption peak.
View Article and Find Full Text PDFNanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers are a promising platform for quantum sensing applications. Sensitivity of the applications using NV centers in NDs is often limited due to the presence of paramagnetic impurity contents near the ND surface. Here, we investigate near-surface paramagnetic impurities in NDs.
View Article and Find Full Text PDFThe interplay between Mn ions and corrole ligands gives rise to complex scenarios regarding the metal centers' electronic properties expressing a range of high oxidation states and spin configurations. The resulting potential of Mn-corroles for applications such as catalysts or fuel cells has recently been demonstrated. However, despite being crucial for their functionality, the electronic structure of Mn-corroles is often hardly accessible with traditional techniques and thus is still under debate, especially under interfacial conditions.
View Article and Find Full Text PDFThe impact of condensed-phase and finite-temperature effects on the theoretical X-ray absorption spectra of transition metal complexes is assessed. The former are included in terms of the all-electron Gaussian and augmented plane-wave approach, whereas the latter are taken into account by extensive ensemble averaging along second-generation Car-Parrinello ab initio molecular dynamics trajectories. We find that employing the periodic boundary conditions and including finite-temperature effects systematically improves the agreement between our simulated X-ray absorption spectra and experimental measurements.
View Article and Find Full Text PDFWe demonstrate here that theory-assisted near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy enables the site-sensitive monitoring of on-surface chemical reactions, thus, providing information not accessible by other techniques. As a prototype example, we have used free-base 5,10,15-tris(pentafluorophenyl)corroles (3H-TpFPC) adsorbed on Ag(111) and present a detailed investigation of the angle-dependent NEXAFS of this molecular species as well as of their thermally induced derivatives. For this, we have recorded experimental C and N K-edge NEXAFS spectra and interpret them based on XAS cross-section calculations by using a continuous fraction approach and core-hole including multiprojector PAW pseudopotentials within DFT.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2017
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
View Article and Find Full Text PDFA numerically efficient yet highly accurate implementation of the crystal orbital Hamilton population (COHP) scheme for plane-wave calculations is presented. It is based on the projector-augmented wave (PAW) formalism in combination with norm-conserving pseudopotentials and allows to extract chemical interactions between atoms from band-structure calculations even for large and complex systems. The potential of the present COHP implementation is demonstrated by an in-depth analysis of the intensively investigated metal-insulator transition in atomic-scale indium wires self-assembled on the Si(111) surface.
View Article and Find Full Text PDFA specialized dose rate measurement device that was designed for monitoring the thyroid dose of children and adults after reactor accidents was tested. In measurements with neck phantoms and a human patient, the device was found to be capable of measuring the required low dose rates, even within increased ambient radiation. It is suitable for the application in emergency care centers.
View Article and Find Full Text PDFThe hexanuclear thioguanidine mixed-valent copper complex cation [Cu (NGuaS) ] (NGuaS = o-SC H NC(NMe ) ) and its oxidized/reduced states are theoretically analyzed by means of density functional theory (DFT) (TPSSh + D3BJ/def2-TZV (p)). A detailed bonding analysis using overlap populations is performed. We find that a delocalized Cu-based ring orbital serves as an acceptor for donated S p electrons.
View Article and Find Full Text PDFTransient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds.
View Article and Find Full Text PDFRadical cyclization is among the most powerful and versatile reactions for constructing mono- and polycyclic systems, but has, to date, remained unexplored in the context of on-surface synthesis. We report the controlled on-surface synthesis of stable corrole radicals on Ag(111) via site-specific dehydrogenation of a pyrrole N-H bond in the 5,10,15-tris(pentafluoro-phenyl)-corrole triggered by annealing at 330 K under ultrahigh-vacuum conditions. We reveal a thermally induced regioselective cyclization reaction mediated by a radical cascade and resolve the reaction mechanism of the pertaining cyclodefluorination reaction at the single-molecule level.
View Article and Find Full Text PDF