Objective: To evaluate the photobiomodulation effects on the receptor area for full-thickness skin graft integration.
Methods: Thirty-Six Wistar rats were divided: red laser (660 nm), infrared laser (808 nm), and control. A skin segment with 5 × 3 cm was removed.
The main cardiovascular disease risk associated with obesity is hypertension. The therapeutic use of photobiomodulation therapy (PBM) is suggested for the treatment of wound healing, osteoarthritis, and arterial diseases. However, few studies have measured how red laser (at 660 nm) acts over hypertension, and any of those studies used experimental obesity model.
View Article and Find Full Text PDFLasers Med Sci
November 2023
To evaluate whether the chronic effect of photobiomodulation therapy (PBM) on systolic arterial pressure (SAP) from two kidneys one clip (2 K-1C) hypertension animal models can cause a hypotensive effect. Serum levels of nitric oxide were also analyzed and the assessment of lipid peroxidation of the thoracic aorta artery. Male Wistar rats were used.
View Article and Find Full Text PDFVascular endothelium is a protective layer of cells lining the lumen of blood vessels that plays important roles by releasing factors responsible for controlling the vascular tone, regulating the expression of pro-inflammatory cytokines, and expressing adhesion molecules involved in vascular hemostasis. Imbalance of vascular properties leads to endothelial dysfunction (ED) and cardiovascular damage. Some diseases, such as sickle cell anemia, are characterized by ED with reduction in the levels of nitric oxide (NO).
View Article and Find Full Text PDFArq Bras Cardiol
October 2022
Background: The formation of foam cells occurs due to the increase in low-density plasma lipoprotein (LDL) and dysregulation of inflammation, which is important for the development of atherosclerosis.
Objective: To evaluate the profile of tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) in the existing foam cell formation method, optimizing this protocol.
Methods: The LDL was isolated, oxidized, and labeled with a Fluorescein isothiocyanate (FITC) probe.
Cisplatin is one of the most widely used anticancer drugs in the treatment of various types of solid human cancers, as well as germ cell tumors, sarcomas, and lymphomas. Strong evidence from research has demonstrated higher efficacy of a combination of cisplatin and derivatives, together with hyperthermia and light, in overcoming drug resistance and improving tumoricidal efficacy. It is well known that the antioncogenic potential of CDDP is markedly enhanced by hyperthermia compared to drug treatment alone.
View Article and Find Full Text PDFLasers Med Sci
August 2022
The aim of this study was to evaluate the participation of nitric oxide (NO) in the hypotensive and vasorelaxation effect induced by PBM using an aluminum gallium arsenide (AlGaAs) diode laser (660 nm). Male Wistar rats were treated with the inhibitor of nitric oxide synthase (L-NAME). A red laser (660 nm; 63 J/cm; 56 s/point) was applied to the abdominal region at six different points.
View Article and Find Full Text PDFAbstractUnderstanding the basis of vascular tonus regulation is fundamental to comprehending cardiovascular physiology. In the present study, we used the recently developed decerebrate rattlesnake preparation to investigate the role of nitric oxide (NO) in the control of vascular tonus in a squamate reptile. This preparation allowed multiple concomitant cardiovascular parameters to be monitored, while avoiding the deleterious effect of anesthetic drugs on autonomic modulation.
View Article and Find Full Text PDFA previous work indicates that the red LASER (660 nm) induces vascular relaxation by nitric oxide (NO)-dependent mechanism. NO activates soluble guanylate cyclase (sGC) which produces cGMP, the main effector in the vasodilation pathway. An interesting pharmacological strategy is to control the levels of intracellular cGMP, preventing its efflux (with multidrug-resistant protein blockers, such as MK-571), or preventing its degradation (such as sildenafil, which inhibits the enzyme responsible for cGMP degradation, the phosphodiesterase-5 PDE5).
View Article and Find Full Text PDFWe found several studies that have used the aortic rings as an experimental model, mainly for the testing of new drugs or new therapies that try to reverse or prevent endothelial dysfunction or characterize its mechanism of action in a biological system, creating the knowledge necessary to obtain the treatment of those several diseases, where many of these treatments involve photobiomodulation therapies. We also found numerous wavelengths represented by different colors of LASER or LED in which frequently, the mechanism of action in biological systems is unknown. This study has as main objective to investigate the effects of the Violet LED Light (405 nm) by using isolated aortic rings, looking for nitric oxide (NO) release, and evaluating if Violet LED Light can modulate the superoxide dismutase (SOD) activity.
View Article and Find Full Text PDFBackground: Obesity leads to a chronic inflammatory state, endothelial dysfunction and hypertension.
Objective: To establish the time-course of events regarding inflammatory markers, endothelial dysfunction, systolic blood pressure (SBP) in obesity in only one experimental model.
Methods: We fed male Wistar rats (eight-week age) with a standard diet (Control - CT, n = 35), or palatable high-fat diet (HFD, n = 35) for 24 weeks.
PLoS One
February 2019
Unlabelled: In this study, we investigated the effects of resistance training (RT), caloric restriction (CR), and the association of both interventions in aortic vascular reactivity and morphological alterations, matrix metalloproteinase-2 (MMP-2) activity, insulin resistance and systolic blood pressure (SBP) in ovariectomized rats. Fifty female Holtzman rats were subjected to ovariectomy and Sham surgery and distributed into the following groups: Sham-sedentary, ovariectomized-sedentary, ovariectomized-resistance training, ovariectomized-caloric restriction, and ovariectomized-resistance training and caloric restriction groups. RT and 30% CR protocols were performed for 13 weeks.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
June 2018
The neuronal control of the immune system is fundamental to the development of new therapeutic strategies for inflammatory disorders. Recent studies reported that afferent vagal stimulation attenuates peripheral inflammation by activating specific sympathetic central and peripheral networks, but only few subcortical brain areas were investigated. In the present study, we report that afferent vagal stimulation also activates specific cortical areas, as the parietal and cingulate cortex.
View Article and Find Full Text PDFJ Pharm Pharm Sci
September 2019
Purpose: In endothelial cells, investigate if the soluble guanylate cyclase (sGC) activation or stimulation is able to potentiate the relaxation in vessels.
Methods: Aortic and coronary rings with and without endothelium were placed in a myograph and cumulative concentration-effect curves for DETA-NO or ataciguat were performed. Nitric oxide (NO) were measured by fluorescence or by selective electrode in human umbilical endothelial cells (HUVECs) in response to some treatments, including ataciguat, 8-Br-cGMP and A23187.
Background:: The endothelium is a monolayer of cells that extends on the vascular inner surface, responsible for the modulation of vascular tone. By means of the release of nitric oxide (NO), the endothelium has an important protective function against cardiovascular diseases.
Objective:: Verify if cis- [Ru(bpy)2(NO2)(NO)](PF6)2 (BPY) improves endothelial function and the sensibility of conductance (aorta) and resistance (coronary) to vascular relaxation induced by BPY.
Purpose: Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound.
Methods: Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.
Background:: Despite knowing that resveratrol has effects on blood vessels, blood pressure and that phytostrogens can also improve the endothelium-dependent relaxation/vasodilation, there are no reports of reveratrol's direct effect on the endothelial function and blood pressure of animals with estrogen deficit (mimicking post-menopausal increased blood pressure).
Objective:: To verify the effect of two different periods of preventive treatment with resveratrol on blood pressure and endothelial function in ovariectomized young adult rats.
Methods:: 3-month old female Wistar rats were used and distributed in 6 groups: intact groups with 60 or 90 days, ovariectomized groups with 60 or 90 days, and ovariectomized treated with resveratrol (10 mg/kg of body weight per day) for 60 or 90 days.
Aims: Autophagy is critical to endothelial function. We explored the effects of autophagy induced by serum deprivation on Human Umbilical Vascular Endothelial Cells (HUVEC) metabolome profile and its inhibition by the antimalarial drug chloroquine (CLQ) using a microfluidic biomimetic model.
Main Methods: The metabolites secreted by HUVEC into the circulating microfluidics were determined by liquid chromatography mass spectrometry (LC-MS) and further analyzed using Metaboanalyst 3.
J Pharm Pharm Sci
September 2016
Purpose: The ruthenium complex cis-[Ru(H-dcbpy-)2(Cl)(NO)] (DCBPY) is a nitric oxide (NO) donor and studies suggested that the ruthenium compounds can inactivate O2-. The aim of this study is to test if DCBPY can revert and/or prevent the endothelial dysfunction.
Methods: Normotensive (2K) and hypertensive (2K-1C) wistar rats were used.
Background/aims: Autophagy plays a fundamental role in cell survival under stress conditions such as nutrient deprivation. Decreased nitric oxide (NO) production, which may contribute to vascular dysfunction, is one of the consequences of autophagy in endothelial cells. The antimalarial drug chloroquine (CLQ) inhibits autophagy by blocking autophagosome formation and has been proposed as adjuvant chemotherapy in other diseases.
View Article and Find Full Text PDFPLoS Negl Trop Dis
August 2012
Background: Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis.
View Article and Find Full Text PDFBackground And Purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas' disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites.
View Article and Find Full Text PDF